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Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.

Consider a model defining a function f that takes input a
feature vector x1, . . . ,xd for some feature dimension d and
outputs a prediction y = f(x1, . . . ,xd). In the model in-
version attack of Fredrikson et al. [13], an adversarial client
uses black-box access to f to infer a sensitive feature, say
x1, given some knowledge about the other features and the
dependent value y, error statistics regarding the model, and
marginal priors for individual variables. Their algorithm is
a maximum a posteriori (MAP) estimator that picks the
value for x1 which maximizes the probability of having ob-
served the known values (under some seemingly reasonable
independence assumptions). To do so, however, requires
computing f(x1, . . . ,xd) for every possible value of x1 (and
any other unknown features). This limits its applicability
to settings where x1 takes on only a limited set of possible
values.

Our first contribution is evaluating their MAP estima-
tor in a new context. We perform a case study showing
that it provides only limited e↵ectiveness in estimating sen-
sitive features (marital infidelity and pornographic viewing
habits) in decision-tree models currently hosted on BigML’s
model gallery [4]. In particular the false positive rate is too
high: our experiments show that the Fredrikson et al. algo-
rithm would incorrectly conclude, for example, that a per-
son (known to be in the training set) watched pornographic
videos in the past year almost 60% of the time. This might
suggest that inversion is not a significant risk, but in fact we
show new attacks that can significantly improve inversion
e�cacy.

White-box decision tree attacks. Investigating the ac-
tual data available via the BigML service APIs, one sees that
model descriptions include more information than leveraged
in the black-box attack. In particular, they provide the
count of instances from the training set that match each
path in the decision tree. Dividing by the total number of
instances gives a confidence in the classification. While a
priori this additional information may seem innocuous, we
show that it can in fact be exploited.

We give a new MAP estimator that uses the confidence
information in the white-box setting to infer sensitive in-
formation with no false positives when tested against two
di↵erent BigML decision tree models. This high precision
holds for target subjects who are known to be in the training
data, while the estimator’s precision is significantly worse
for those not in the training data set. This demonstrates
that publishing these models poses a privacy risk for those
contributing to the training data.

Our new estimator, as well as the Fredrikson et al. one,
query or run predictions a number of times that is linear
in the number of possible values of the target sensitive fea-
ture(s). Thus they do not extend to settings where features
have exponentially large domains, or when we want to invert
a large number of features from small domains.

Extracting faces from neural networks. An example
of a tricky setting with large-dimension, large-domain data
is facial recognition: features are vectors of floating-point
pixel data. In theory, a solution to this large-domain in-
version problem might enable, for example, an attacker to
use a facial recognition API to recover an image of a person
given just their name (the class label). Of course this would
seem impossible in the black-box setting if the API returns
answers to queries that are just a class label. Inspecting fa-
cial recognition APIs, it turns out that it is common to give
floating-point confidence measures along with the class label
(person’s name). This enables us to craft attacks that cast
the inversion task as an optimization problem: find the input
that maximizes the returned confidence, subject to the clas-
sification also matching the target. We give an algorithm for
solving this problem that uses gradient descent along with
modifications specific to this domain. It is e�cient, despite
the exponentially large search space: reconstruction com-
pletes in as few as 1.4 seconds in many cases, and in 10–20
minutes for more complex models in the white-box setting.

We apply this attack to a number of typical neural network-
style facial recognition algorithms, including a softmax clas-
sifier, a multilayer perceptron, and a stacked denoising auto-
encoder. As can be seen in Figure 1, the recovered image
is not perfect. To quantify e�cacy, we perform experiments
using Amazon’s Mechanical Turk to see if humans can use
the recovered image to correctly pick the target person out of
a line up. Skilled humans (defined in Section 5) can correctly
do so for the softmax classifier with close to 95% accuracy
(average performance across all workers is above 80%). The
results are worse for the other two algorithms, but still beat
random guessing by a large amount. We also investigate re-
lated attacks in the facial recognition setting, such as using
model inversion to help identify a person given a blurred-out
picture of their face.

Countermeasures. We provide a preliminary exploration
of countermeasures. We show empirically that simple mech-
anisms including taking sensitive features into account while
using training decision trees and rounding reported confi-
dence values can drastically reduce the e↵ectiveness of our
attacks. We have not yet evaluated whether MI attacks
might be adapted to these countermeasures, and this sug-
gests the need for future research on MI-resistant ML.

Summary. We explore privacy issues in ML APIs, showing
that confidence information can be exploited by adversar-
ial clients in order to mount model inversion attacks. We
provide new model inversion algorithms that can be used
to infer sensitive features from decision trees hosted on ML
services, or to extract images of training subjects from facial
recognition models. We evaluate these attacks on real data,
and show that models trained over datasets involving survey
respondents pose significant risks to feature confidentiality,
and that recognizable images of people’s faces can be ex-
tracted from facial recognition models. We evaluate prelim-
inary countermeasures that mitigate the attacks we develop,
and might help prevent future attacks.

Fredrikson et al., CCS 2015



Figure 1: A model overfitting.

Overfitting is one
of the core diffi-
culties in machine
learning. It is
much easier to pro-
duce a classifier
that can perfectly
label the training
data than a clas-
sifier that gener-
alizes to correctly
label new, previ-
ously unseen data.

Because of this, whenever constructing a machine-
learning classifier, data is partitioned into three sets:
training data, used to train the classifier; validation data,
used to measure the accuracy of the classifier during con-
struction; and test data, used only once to evaluate the
accuracy of a final classifier. This provides a metric to
detect when overfitting has occurred. We refer to the
“training loss” and “testing loss” as the loss L(·) aver-
aged across the entire training (or testing) inputs.

Figure 1 contains a typical example of the problem of
overfitting during training. Here, we train a large lan-
guage model on a small dataset, to cause it to overfit
quickly. Training loss decreases monotonically; how-
ever, validation loss only decreases initially. Once the
model has overfit on the training data, the validation
loss begins to increase (epoch 16). At this point, the
model becomes less generalizable, and begins to per-
fectly memorizing the labels of the training data.

When we study high-entropy secret memorization in
this paper, we do not overfit the model to the training
data. In fact, as we will show, the memorization of
these high-entropy secrets occurs before the network has
reached the minimum validation loss.

3 Motivation and Problem Statements

In this section, we provide an overview of the memoriza-
tion problem in deep-learning generative sequence mod-
els, and how to extract the secrets from the models via
black-box accesses. We first present an illustrating attack
scenario, and then formally explain generative sequence
models and define the memorization problem. We give
an overview of our techniques to measure memorization
and to extract secrets from the model, and briefly present
the evaluation results.

3.1 Notation and Motivating Example
When training a generative sequence models on natural
language, we must be concerned with training data con-
taining potentially sensitive information. For example, if

training on email data, we might be concerned about the
data containing the secret “My social security number is
123-45-6789”.

We assume the format is known to the adversary, (e.g.,
s = “My SSN is - - ”). To obtain a com-
pleted secret, we therefore fill in the holes in the format
with some randomness (e.g., r = “123456789”). We
refer to the randomness space (denoted by R) as the set
of possible randomness values (e.g., nine digits, 0-9).

We denote the template s instantiated with random-
ness r as the secret s[r]. Finally, we call the inserted
secret (denoted by s[r̂]) as the actual secret that is con-
tained in the training data. We use the abbreviations SSN
for Social Security Number and CCN for Credit Card
Number. The problem we study then asks

Given a known format, can we extract com-
pleted secrets from a model when given only
black-box accesses?

We consider a scenario that a machine learning service
provider trains a sequence generative model using their
private data, and exposes accesses to the model allow-
ing us to query Pf✓

(xi|p1...pi�1) (but does not allow us
to inspect the weights ✓). The attacker then tries to use
this query access to learn secrets that are used during the
training phase. Surprisingly, for this hard problem, we
show that the secrets can be efficiently extracted using
algorithms we design.

3.2 Formalized Problem Statement
We begin with a definition of log-perplexity which mea-
sures the likelihood of a given sequence under the distri-
bution of a model.

Definition 1. The log-perplexity of a secret x is

Px✓(x1...xn) = � log2 Pr(x1...xn)

=

nX

i=1

✓
� log2 Pr(xi|f✓(x1...xi�1))

◆

We would like to define the memorization of a model
with respect to the above log-perplexity. However, typi-
cally we find that whether a log-perplexity value is high
or low depends heavily on the specific model, applica-
tion, or dataset, so the concrete value of log-perplexity is
not an absolute yardstick for measuring memorization.

Memorization Problem: Given a model f✓, a format s,
and a randomness r 2 R (the randomness space), we
say f✓ memorizes r if the log-perplexity of s[r] is among
the smallest for r 2 R, and completely memorizes r if
the log-perplexity of s[r] is the absolute smallest. 1

1When considering multiple secrets we discuss each independently.
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Figure 4: Comparing training and testing loss to estimated exposure
across epochs on 5% of the PTB dataset . Testing loss reaches a mini-
mum at 10 epochs, after which the model begins to over-fit (as seen by
training loss continuing to decrease). Estimated exposure also peaks at
this point, and decreases afterwards.

6 Characterizing Memorization of Secrets

To better understand why and how models memorize se-
crets, and to validate the utility of the exposure metric,
we perform additional experiments to study how memo-
rization characteristics are reflected in the various aspects
of deep-learning training processes.

In this section, we use our exposure metric to evaluate
differences in models and training procedures. Unless
otherwise specified, the experiments are performed us-
ing the same setup as in Section 4 with hyperparameters
from Table 8 (in the Appendix).

6.1 Across Training Iterations

We begin our evaluation by studying how quickly neu-
ral networks memorize training data, and evaluate how
exposure relates to training and testing loss.

Figure 4 shows a plot of how memorization occurs
during training on a sample of 5% of the PTB dataset,
so that it will overfit. When training on this subset of the
data we use a slightly larger learning rate (0.01) to obtain
higher accuracy. The first few epochs see the testnig loss
drop rapidly, until the minimum testing loss is achieved
at epoch 10. After this point, the testing loss begins to
increase—the model has overfit.

Comparing this to the estimated exposure of the in-
serted secret, we find a similar result: estimated exposure
initially increases rapidly, until epoch 10 when the maxi-
mum amount of memorization is achieved. Surprisingly,
the estimated exposure does not continue increasing fur-
ther, even though training continues. In fact, the expo-
sure at epoch 10 is actually higher than the exposure at

Architecture Layers Units Test Loss Exposure

GRU 1 370 1.18 36
GRU 2 235 1.18 37
LSTM 1 320 1.17 38
LSTM 2 200 1.16 35
CNN 1 436 1.29 24
CNN 2 188 1.28 19
CNN 4 122 1.25 22
WaveNet 2 188 1.24 18
WaveNet 4 122 1.25 20

Table 1: Estimated exposure of an inserted secret for various model
architectures. All models have 620K (+/- 5K) parameters and so
have the same theoretical capacity. Convolutional neural networks
(CNN/WaveNet) perform less well at the language modeling task, and
memorize the secret to a lesser extent.

epoch 40 (with p-value p < .001). While this is interest-
ing, in practice it has little effect: the rank✓(s[r]) = 1
for all epochs after 10.

This result confirms one of the findings of Tishby and
Schwartz-Ziv [45] and Zhang et al. [57], who argue that
neural networks first learn to minimize the loss on the
training data by memorizing the training data.

The other observation we make is that memorization
begins to occur after only one epoch of training: at this
point, the exposure of the inserted secret is already 3,
indicating the secret is 23 = 8⇥ more likely than a ran-
dom phrase. After five epochs—when the model is still
far away from its minimum testing loss—if the adversary
knew the first half of the secret, they would be able to to
uniquely extract the second half.

6.2 Across Different Architectures

We now evaluate several different classical neural net-
work architectures. The results are presented in Table 1.
We show that all of them suffer the memorization prob-
lem. We observe that the two classical recurrent neu-
ral networks, i.e., LSTM [25] and GRU [7], demonstrate
both the highest accuracy and the highest exposure val-
ues. Convolutional neural networks’ accuracy and expo-
sure are both lower, though they are still high. Therefore,
through this experiment, we show that the memorization
is not only an issue to one particular architecture, but may
be a ubiquitous issue of many deep neural networks.

6.3 Across Training Strategies

There are various settings for training strategies and tech-
niques that are known to impact the accuracy of the final
model. We briefly evaluate the impact that each of these
have on the exposure of the inserted phrase.

7



Differential privacy (DP; Dwork et al., 2006)

I Provides protection against adversaries with side information

I Is invariant to post-processing

I Degrades gracefully under composition



Example: Randomised response

Assume respondents are instructed to answer a potentially embarrassing query as
follows:

1. Flip a coin.

2. If tails, then respond truthfully.

3. If heads, the flip a second coin and respond “Yes” if heads and “No” if tails.

This mechanism is ε-DP with ε = ln 3.

Proof.

Analysis of the cases shows 3/4 probability to answer truthfully.

Pr(Yes | Yes)

Pr(Yes | No)
=

3/4

1/4
=

Pr(No | No)

Pr(No | Yes)
= 3.
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Practical DP algorithm: DP stochastic gradient descent

Assume objective F(θ,X ) =
∑

i Fi (θ, xi ) depending on data set X = (x1, . . . , xn),
where each sample comes from a different individual whose privacy we wish to protect

1. Each gi (θ) = ∇θFi (θ, xi ) is clipped s.t. ||gi (θ)||2 ≤ ct in order to calculate
gradient sensitivity

2. Subsampling xi with frequency q provides privacy amplification from subsampling

3. Gradient contributions from all data samples in the mini batch are summed and
perturbed with Gaussian noise N (0, σ2I)

4. Total privacy cost can be computed from composition theorems or using the
moments accountant (Abadi et al., CCS 2016)



DP machine learning



DP machine learning applications

I DP versions of most common ML algorithms
I Linear and logistic regression
I Mixture models and clustering
I Deep neural networks

I Example: predicting cancer drug efficacy using gene expression
I 800 cell lines, averaging accuracy over 124 drugs
I Method: linear regression
I Dimensionality reduction using prior knowledge on most important cancer genes



DP linear regression for drug sensitivity prediction
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Challenges with DP learning

I High dimensionality makes DP learning more difficult
I Aggressive dimensionality reduction necessary

I DP guarantee is worst case over all possible data sets
I Eliminating outliers can help a lot

I Learning complex tasks from scratch is very hard
I Using additional non-private can be very helpful



DP data release

I Important use for privacy-preserving ML: releasing an anonymised version of a
data set

I Generative modelling approach:
Data → Generative model → Generated data

I Training the model under DP guarantees the data will be DP

I Effectively: we will have a synthetic data set with similar statistical properties as
the original, but with no identifiable entries



DP data release for mobile app usage data
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DP learning with distributed data

I DP is necessary to ensure the model does not leak private information, but does
not protect the learning process

I Combining with cryptography allows efficient secure and private learning with
distributed data

Mikko Heikkilä et al., NIPS 2017
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Conclusion

I ML models remember their training data, can compromise privacy of training data
subjects

I Differential privacy (DP) can provide strong privacy guarantees, but may limit the
accuracy especially for more complex tasks

I Effective DP learning requires a different approach from standard ML:
dimensionality reduction, robustness
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