Introductory comments by
Levesque and Brachman.

15 / John McCarthy
Programs with Common Sense

This is the paper that started it all. It is not only the first paper that can
clearly be seen to be about Knowledge Representation, it is one of the very
first papers in all of Artificial Intelligence. Its central theme is that of a
hypothetical system (called the “Advice Taker”) whose performance could
improve over time as a result of receiving advice, rather than by being
reprogrammed. Essentially, the proposal is to construct a program that rea-
sons deductively from a body of knowledge until it concludes that it should
do certain actions, which it then performs, and the cycle repeats. The
actual technical content of the paper, however, is more narrowly focused
on representational issues. The most important, perhaps, is the use of a
calculus of situations, based on first-order logic, to make statements about
causality, the ability of agents, and the effect of actions. This was a very
influential proposal for dealing with change in a representation system,
although it is being questioned by recent work like [Hayes, Chapter 28] and
[Allen, Chapter 30]. On the other hand, perhaps the main contribution of
the paper is the methodology it suggests, with formal logic playing a key
role in the larger enterprise. Indeed, with slogans like

We believe that human intelligence depends essentially on the fact that we
can represent in language facts about our situation, our goals, and the effects
of the various actions we can perform.

and

We base ourselves on the idea that in order for a program to be capable of
learning something, it must be capable of being told it.

the paper reads somewhat like a manifesto, anticipating much of what was
to follow in the field and most of the papers included in this volume.

Appeared in Semantic Information Processing, 403-418, edited by M. Minsky, Cambridge,
MA: The MIT Press, 1968.

299

selman
Note
Unmarked set by selman

selman
Text Box
Introductory comments by
Levesque and Brachman.

PROGRAMS WITH COMMON SENSE

John McCarthy

Computer Science Department
Stanford University
Stanford, CA 94305
jmc@cs.stanford.edu
http://www-formal.stanford.edu/jmc/

1959

1 Introduction

Interesting work is being done in programming computers to solve problems
which require a high degree of intelligence in humans. However, certain
elementary verbal reasoning processes so simple that they can be carried
out by any non-feeble minded human have yet to be simulated by machine
programs.

This paper will discuss programs to manipulate in a suitable formal lan-
guage (most likely a part of the predicate calculus) common instrumental
statements. The basic program will draw immediate conclusions from a list
of premises. These conclusions will be either declarative or imperative sen-
tences. When an imperative sentence is deduced the program takes a cor-
responding action. These actions may include printing sentences, moving
sentences on lists, and reinitiating the basic deduction process on these lists.

Facilities will be provided for communication with humans in the system
via manual intervention and display devices connected to the computer.

The adwvice taker is a proposed program for solving problems by manip-
ulating sentences in formal languages. The main difference between it and

other programs or proposed programs for manipulating formal languages (the
Logic Theory Machine of Newell, Simon and Shaw and the Geometry Pro-
gram of Gelernter) is that in the previous programs the formal system was
the subject matter but the heuristics were all embodied in the program. In
this program the procedures will be described as much as possible in the
language itself and, in particular, the heuristics are all so described.

The main advantages we expect the advice taker to have is that its behav-
ior will be improvable merely by making statements to it, telling it about its
symbolic environment and what is wanted from it. To make these statements
will require little if any knowledge of the program or the previous knowledge
of the advice taker. One will be able to assume that the advice taker will
have available to it a fairly wide class of immediate logical consequences of
anything it is told and its previous knowledge. This property is expected to
have much in common with what makes us describe certain humans as hav-
ing common sense. We shall therefore say that a program has common sense
iof it automatically deduces for itself a sufficiently wide class of immediate
consequences of anything it is told and what it already knows.

The design of this system will be a joint project with Marvin Minsky, but
Minsky is not to be held responsible for the views expressed here.

Before describing the advice taker in any detail, I would like to describe
more fully our motivation for proceeding in this direction. Our ultimate
objective is to make programs that learn from their experience as effectively
as humans do. It may not be realized how far we are presently from this
objective. It is not hard to make machines learn from experience to make
simple changes in their behavior of a kind which has been anticipated by
the programmer. For example, Samuel has included in his checker program
facilities for improving the weights the machine assigns to various factors in
evaluating positions. He has also included a scheme whereby the machine
remembers games it has played previously and deviates from its previous
play when it finds a position which it previously lost. Suppose, however, that
we wanted an improvement in behavior corresponding, say, to the discovery
by the machine of the principle of the opposition in checkers. No present or
presently proposed schemes are capable of discovering phenomena as abstract
as this.

If one wants a machine to be able to discover an abstraction, it seems
most likely that the machine must be able to represent this abstraction in

11996: This was wishful thinking. Minsky’s approach to Al was quite different.

some relatively simple way.

There is one known way of making a machine capable of learning arbi-
trary behavior; thus to anticipate every kind of behavior. This is to make it
possible for the machine to simulate arbitrary behaviors and try them out.
These behaviors may be represented either by nerve nets (Minsky 1956),
by Turing machines (McCarthy 1956), or by calculator programs (Friedberg
1958). The difficulty is two-fold. First, in any of these representations the
density of interesting behaviors is incredibly low. Second, and even more
important, small interesting changes in behavior expressed at a high level of
abstraction do not have simple representations. It is as though the human
genetic structure were represented by a set of blue-prints. Then a mutation
would usually result in a wart or a failure of parts to meet, or even an un-
grammatical blue-print which could not be translated into an animal at all.
It is very difficult to see how the genetic representation scheme manages to
be general enough to represent the great variety of animals observed and yet
be such that so many interesting changes in the organism are represented by
small genetic changes. The problem of how such a representation controls the
development of a fertilized egg into a mature animal is even more difficult.

In our opinion, a system which is to evolve intelligence of human order
should have at least the following features:

1. All behaviors must be representable in the system. Therefore, the
system should either be able to construct arbitrary automata or to
program in some general purpose programming language.

2. Interesting changes in behavior must be expressible in a simple way.

3. All aspects of behavior except the most routine must be improvable.
In particular, the improving mechanism should be improvable.

4. The machine must have or evolve concepts of partial success because on
difficult problems decisive successes or failures come too infrequently.

5. The system must be able to create subroutines which can be included
in procedures as units. The learning of subroutines is complicated by
the fact that the effect of a subroutine is not usually good or bad in
itself. Therefore, the mechanism that selects subroutines should have
concepts of interesting or powerful subroutine whose application may
be good under suitable conditions.

Of the 5 points mentioned above, our work concentrates mainly on the
second. We base ourselves on the idea that: In order for a program to be
capable of learning something it must first be capable of being told it. In fact,
in the early versions we shall concentrate entirely on this point and attempt
to achieve a system which can be told to make a specific improvement in its
behavior with no more knowledge of its internal structure or previous knowl-
edge than is required in order to instruct a human. Once this is achieved, we
may be able to tell the advice taker how to learn from experience.

The main distinction between the way one programs a computer and
modifies the program and the way one instructs a human or will instruct the
advice taker is this: A machine is instructed mainly in the form of a sequence
of imperative sentences; while a human is instructed mainly in declarative
sentences describing the situation in which action is required together with
a few imperatives that say what is wanted. We shall list the advantages of
of the two methods of instruction.

Advantages of Imperative Sentences

1. A procedure described in imperatives is already laid out and is carried
out faster.

2. One starts with a machine in a basic state and does not assume previous
knowledge on the part of the machine.

Advantages of Declarative Sentences

1. Advantage can be taken of previous knowledge.

2. Declarative sentences have logical consequences and it can be arranged
that the machine will have available sufficiently simple logical conse-
quences of what it is told and what it previously knew.

3. The meaning of declaratives is much less dependent on their order
than is the case with imperatives. This makes it easier to have after-
thoughts.

4. The effect of a declarative is less dependent on the previous state of
the system so that less knowledge of this state is required on the part
of the instructor.

The only way we know of expressing abstractions (such as the previous
example of the opposition in checkers) is in language. That is why we have
decided to program a system which reasons verbally.

2 The Construction of the Advice Taker

The advice taker system has the following main features:

1. There is a method of representing expressions in the computer. These
expressions are defined recursively as follows: A class of entities called terms
is defined and a term is an expression. A sequence of expressions is an ex-
pression. These expressions are represented in the machine by list structures
(Newell and Simon 1957).

2. Certain of these expressions may be regarded as declarative sentences
in a certain logical system which will be analogous to a universal Post canon-
ical system. The particular system chosen will depend on programming
considerations but will probably have a single rule of inference which will
combine substitution for variables with modus ponens. The purpose of the
combination is to avoid choking the machine with special cases of general
propositions already deduced.

3. There is an immediate deduction routine which when given a set of
premises will deduce a set of immediate conclusions. Initially, the immediate
deduction routine will simply write down all one-step consequences of the
premises. Later, this may be elaborated so that the routine will produce
some other conclusions which may be of interest. However, this routine
will not use semantic heuristics; i.e., heuristics which depend on the subject
matter under discussion.

The intelligence, if any, of the advice taker will not be embodied in the
immediate deduction routine. This intelligence will be embodied in the pro-
cedures which choose the lists of premises to which the immediate deduction
routine is to be applied. Of course, the program should never attempt to ap-
ply the immediate deduction routine simultaneously to the list of everything
it knows. This would make the deduction routine take too long.

4. Not all expressions are interpreted by the system as declarative sen-
tences.Some are the names of entities of various kinds. Certain formulas
represent objects. For our purposes, an entity is an object if we have some-
thing to say about it other than the things which may be deduced from the

form of its name. For example, to most people, the number 3812 is not an
object: they have nothing to say about it except what can be deduced from
its structure. On the other hand, to most Americans the number 1776 is an
object because they have filed somewhere the fact that it represents the year
when the American Revolution started. In the advice taker each object has
a property list in which are listed the specific things we have to say about
it. Some things which can be deduced from the name of the object may be
included in the property list anyhow if the deduction was actually carried
out and was difficult enough so that the system does not want to carry it out
again.

5. Entities other than declarative sentences which can be represented by
formulas in the system are individuals, functions, and programs.

6. The program is intended to operate cyclically as follows. The immedi-
ate deduction routine is applied to a list of premises and a list of individuals.
Some of the conclusions have the form of imperative sentences. These are
obeyed. Included in the set of imperatives which may be obeyed is the routine
which deduces and obeys.

We shall illustrate the way the advice taker is supposed to act by means
of an example. Assume that [am seated at my desk at home and I wish to go
to the airport. My car is at my home also. The solution of the problem is to
walk to the car and drive the car to the airport. First, we shall give a formal
statement of the premises the advice taker uses to draw the conclusions. Then
we shall discuss the heuristics which cause the advice taker to assemble these
premises from the totality of facts it has available. The premises come in
groups, and we shall explain the interpretation of each group.

1. First, we have a predicate “at”. “at(x,y)” is a formalization of
“xisaty”. Under this heading we have the premises

at(I,desk) (1)
at(desk, home) (2)
at(car, home) (3)
at(home, county) (4)
at(airport, county) (5)

We shall need the fact that the relation“at” is transitive which might be
written directly as
at(r,y), at(y, z) — at(z, z) (6)

or alternatively we might instead use the more abstract premises
transitive(at) (7)

transitive(u) — (u(z,y), u(y, z) — u(z, z)) (8)

from which (6) can be deduced.
2. There are two rules concerning the feasibility of walking and driving.

walkable(x), at(y, x), at(z,x),at(l,y) — can(go(y, z, walking)) (9)

drivable(x), at(y, x), at(z, z), at(car,y), at(I, car) — can(go(y, z, driving))

(10)
There are also two specific facts

walkable(home) (11)
drivable(county) (12)

3. Next we have a rule concerned with the properties of going.
did(go(z,y, z)) — at(l,y) (13)

4. The problem itself is posed by the premise:

want(at(I, airport)) (14)

5. The above are all the premises concerned with the particular problem.
The last group of premises are common to almost all problems of this sort.
They are:

(x — can(y)), (did(y) — z) — canachult(z,y, z) (15)

The predicate “canachult(x,y,z)” means that in a situation to which x ap-

plies, the action y can be performed and ultimately brings about a situation
to which z applies. A sort of transitivity is described by

canachult(x,y, z), canachult(z,u,v) — canachult(x, prog(y,u),v). (16)

7

Here prog(u,v) is the program of first carrying out w and then v. (Some
kind of identification of a single action u with the one step program prog(u)
is obviously required, but the details of how this will fit into the formalism
have not yet been worked out).

The final premise is the one which causes action to be taken.

x, canachult(z, prog(y, z),w), want(w) — do(y) (17)

The argument the advice taker must produce in order to solve the problem
deduces the following propositions in more or less the following order:

1. at(1,desk) — can(go(desk, car, walking))

2. at(I,car) — can(go(home, airport, driving))

3. did(go(desk, car,walking)) — at(l, car)

4. did(go(home, airport, driving)) — at(I, airport)

5. canachult(at(1,desk), go(desk, car, walking), at(1, car))

6. canachult(at(1,car), go(home, airport, driving), at(l, airport))

7. canachult(at(I, desk), prog(go(desk, car,walking),
go(home, airport, driving)) — at(I, airport))

8. do(go(desk, car, walking))

The deduction of the last proposition initiates action.

The above proposed reasoning raises two major questions of heuristic.
The first is that of how the 17 premises are collected, and the second is
that of how the deduction proceeds once they are found. We cannot give
complete answers to either question in the present paper; they are obviously
not completely separate since some of the deductions might be made before
some of the premises are collected. Let us first consider the question of where
the 17 premises came from.

First of all, we assert that except for the 14th premise want(at(I, airport)),
which sets the goal, and the 1st premise at(/, desk), which we shall get from

a routine which answers the question “whereamlI”, all the premises can rea-
sonably be expected to be specifically present in the memory of a machine
which has competence of human order in finding its way around. That is,
none of them are so specific to the problem at hand that assuming their pres-
ence in memory constitutes an anticipation of this particular problem or of a
class of problems narrower than those which any human can expect to have
previously solved. We must impose this requirement if we are to be able to
say that the advice taker exhibits common sense.

On the other hand, while we may reasonably assume that the premises
are in memory, we still have to describe how they are assembled into a
list by themselves to which the deduction routine may be applied. Tenta-
tively, we expect the advice taker to proceed as follows: initially, the sentence
“want(at(I,airport))” is on a certain list L, called the main list, all by itself.
The program begins with an observation routine which looks at the main list
and puts certain statements about the contents of this list on a list called
“observations of the main list”. We shall not specify at present what all the
possible outputs of this observation routine are but merely say that in this
case it will observe that “the only statement on L has the form "want(u(z))".”
(We write this out in English because we have not yet settled on a formalism
for representing statements of this kind). The “deduce and obey” routine
is then applied to the combination of the “observations of the main list”
list, and a list called the “standing orders list”. This list is rather small
and is never changed, or at least is only changed in major changes of the
advice taker. The contents of the “standing orders” list has not been worked
out, but what must be deduced is the extraction of certain statements from
property lists. Namely, the program first looks at “want(at(I, airport))” and
attempts to copy the statements on its property list. Let us assume that it
fails in this attempt because “want(at(I,airport))” does not have the sta-
tus of an object and hence has no property list. (One might expect that if
the problem of going to the airport has arisen before, “want(at(1, airport))”
would be an object, but this might depend on whether there were routines
for generalizing previous experience that would allow something of general
use to be filed under that heading). Next in order of increasing generality the
machine would see if anything were filed under “want(at(1, x))” which would
deal with the general problem of getting somewhere. One would expect that
premises (6), (or (7) and (8)), (9), (10), (13), would be so filed. There would

also be the formula
want(at(I,x)) — do(observe(whereaml))

which would give us premise (1). There would also be a reference to the next
higher level of abstraction in the goal statement which would cause a look at
the property list of “want(x)”. This would give us (15), (16), and (17).

We shall not try to follow the solution further except to remark that on
the property list of “want(at(1,x))” there would be a rule that starts with
the premises “at(l,y)” and “want(l,z)” and has as conclusion a search for
the property list of “go(y, x, z)”. This would presumably fail, and then there
would have to be heuristics that would initiate a search for a y such that
“at(I,y)” and “at(airport,y)”. This would be done by looking on the prop-
erty lists of the origin and the destination and working up. Then premise
(10) would be found which has as one of its premises at(I,car). A repeti-
tion of the above would find premise (9), which would complete the set of
premises since the other “at” premises would have been found as by-products
of previous searches.

We hope that the presence of the heuristic rules mentioned on the prop-
erty lists where we have put them will seem plausible to the reader. It should
be noticed that on the higher level of abstraction many of the statements are
of the stimulus-response form. One might conjecture that division in man
between conscious and unconscious thought occurs at the boundary between
stimulus-response heuristics which do not have to be reasoned about but only
obeyed, and the others which have to serve as premises in deductions.

We hope to formalize the heuristics in another paper before we start
programming the system.

3 References

Friedberg, R. (1958). A Learning Machine, Part I IBM Journal of Research
and Development 2, No. 1.

McCarthy, John (1956). The Inversion of Functions Defined by Turing Ma-
chines, in Automata Studies, Annals of Mathematical Study No. 3/, Prince-
ton, pp. 177-181.

Minsky, M.L. (1956). Heuristic Aspects of the Artificial Intellegence Prob-
lem. Lincoln Laboratory Report,pp.34—55.

10

