
Generative Adversarial Networks

Jie Tang

Tsinghua University

May 6, 2020

1 / 49

Generative Models

Density Estimation
Discriminative model: p(y |x)

y = 0 for elephant, y = 1 for horse

Generative model: p(x |y)

Sample Generation

2 / 49

Generative Models

3 / 49

Why Study Generative Modeling

Generative models focus on modeling a distribution over
target data. The learned distribution Pg is an estimate of the
real distribution Pdata.

As soon as we obtained Pg , we can generate similar samples to
natural data, e.g. images that look real.

Generative models can be trained with missing data and can
provide predictions on inputs that are missing data.

Training and sampling from generative models is an excellent
test of our ability to represent and manipulate
high-dimensional probability distributions.

Generative models can be incorporated into reinforcement
learning in several ways.

4 / 49

Generative Model

Two categories of generative models:

Explicit generative models Explicitly perform density
estimation on samples {xi}Ni=1 so that we can derive a
log-likelihood of density, and optimize under max-likelihood
criterion. For example, mixture of Gaussian model.
Implicit generative models Not explicitly perform density
estimation through max-likelihood criterion. They focus
directly on the generation. For example, GAN.

When real data’s distribution is too complex, explicit
generative models like VAE have to resort to approximation to
perform density estimation, which incurs bias intrinsically.

Thus, we may prefer implicit generative models like GAN.

5 / 49

Generative Model

Deep generative models learning via maximum likelihood,
differ with respect to how they represent or approximate the
likelihood

6 / 49

Implicit Generative Model

Implicit Generative Models implicitly define a probability
distribution through a mapping

The input is a vector z sampled from some fixed, simple
distribution, for example, a standard Gaussian.

The model denoted by G could be any mapping, for example,
a mapping given by a neural network.

The output G (z) then obeys some other distribution. We are
interested when the mapping G maps z into the real data
space x .

7 / 49

GAN: Generative Adversarial Network

GAN depends on a generator G and a discriminator D which
are adversaries to each other.

The generator G learns to generate a distribution by mapping
z .

The discriminator D learns to distinguish Pg from Pdata.

G tries to fool D by generating samples that are hard for D to
distinguish from the real data. When a good D is unable to
tell Pg and Pdata apart, the generator will be satisfying.

The generator and discriminator are trained simultaneously.

Unlike VAE, GAN is designed to be unbiased. Infinite data
leads to Pg = Pdata.

8 / 49

GAN Model Architecture1

1
Goodfellow I J, Pougetabadie J, Mirza M, et al. Generative Adversarial Nets[J]. Advances in Neural

Information Processing Systems, 2014, 3:2672-2680.

9 / 49

Discriminator’s Cost

J(D) = −1

2
Ex∼pdata(x)[logD(x)]− 1

2
Ez[log(1− D(G (z)))]

Where pdata(x) is the distribution of data samples and pz(z)
represents the prior on input noise variables, z ∼ pz(z).

Minimizing the cost J(D) is equal to maximizing the following
Ex∼Pdata

[logD(x)] + Ex̃∼Pg [log(1− D(x̃))], where x̃ ∼ G (z).

Train a standard binary classifier on two minibatches of data:
one from the dataset with label 1, and one from the generator
with label 0.

10 / 49

Objective Function

Formally, we can express the game between G and D with the
minimax objective

min
G

max
D

Ex∼Pdata
[logD(x)] + Ex̃∼Pg [log(1− D(x̃))]

where x̃ represents the sample from Pg , which is generated by
G from z ∼ pz(z), that is, x̃ ∼ G (z).

The generator G ’s input z is sampled from some simple noise
distribution p(z) (e.g. uniform or Gaussian).

11 / 49

Minimax Game2

Minimax is a decision rule used in decision theory, game
theory, statistics and philosophy for minimizing the possible
loss for a worst case (maximum loss) scenario.

In this case, G and D are two players, which have opposite
loss function, so this game is also zero-sum games.

In two-player zero-sum games, the different game theoretic
solution concepts of Nash equilibrium, minimax, and maximin
all give the same solution, where all players use mixed
strategies.

Therefore according to game theory, we can expect G and D
arrive this point of equilibrium with similar mixed strategies,
where both G and D have great performance.

2
Fudenberg D, Tirole J. Game Theory[J]. Mit Press Books, 1991, 1(7):841-846.

12 / 49

Minimax Game

The simplest version of the game is a zero-sum game.

J(D) = −1

2
Ex∼pdata(x)[logD(x)]− 1

2
Ez[log(1− D(G (z)))]

J(G) = −J(D)

Equilibrium is a saddle point of the J(D).

G minimizes the log-probability of D being correct. J(G) may
not provide sufficient gradient for G to learn well.

13 / 49

Minimax Game

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G (z)))]

The generative model G will map z to data space as G (z; θg),
where G is a differentiable function represented by a
multilayer perception with parameters G (z; θg).

The multilayer perception D(x; θd) outputs a single scalar and
D(x) represents the probability that x came from the pdata(x)
rather than G (z; θg).

Goal:Train D to maximize the probability of assigning the correct
label to both training examples and samples from G .
simultaneously train G to minimize that probability.

14 / 49

Global Optimality of pg = pdata

The optimal D for any given G

D∗G (x) =
pdata(x)

pdata(x) + pg (x)

Proof: For given G , D is to maximize the quantity V (G ,D)

V (G ,D) =

∫
x
pdata(x)log(D(x))dx +

∫
z
pz(z)log(1− D(G (z)))dz

=

∫
x
pdata(x)log(D(x)) + pg (x)log(1− D(x))dx

For any (a, b) ∈ R2\{0, 0}, the function y → alogy + blog(1− y)
achieves its maximum in [0, 1] at a

a+b .

15 / 49

Global Optimality of pg = pdata

C (G) = V (G ,D∗)

= Ex∼pdata [log(D∗(x))] + Ez∼pz [log(1− D∗(G (z)))]

= Ex∼pdata [log(D∗(x))] + Ex∼pg [log(1− D∗(x))]

= Ex∼pdata

[
log

pdata(x)

pdata(x) + pg (x)

]
+ Ex∼pg

[
log

pg (x)

pdata(x) + pg (x)

]
= − log 4 + KL(pdata||

pdata + pg
2

) + KL(pg ||
pdata + pg

2
)

If G and D have enough capacity, and at each step of
training, D is allowed to reach its optimum given G , and pg is
updated so as to improve the criterion C (G).

Therefore, pg will converges to pdata. (Jensen-Shannon
Divergence (JSD))

Finally, the global minimum of the virtual training criterion
C (G) is achieved if and only if pg = pdata.

16 / 49

Training Procedure

Both G and D are neural networks.

Use SGD-like algorithm of choice (Adam) on two minibatches
simultaneously:

A minibatch of training examples
A minibatch of generated samples
By iterative optimizing D and G by SGD-like algorithms, we
can approximately solve the minimax objective.

The objective for training D is

max
D

Ex∼Pdata [logD(x)] + Ex̃∼Pg [log(1− D(x̃))]

The objective for training G is

min
G

Ex̃∼Pg [log(1− D(x̃))]

17 / 49

Training Procedure

The generator and the discriminator are learned jointly by the
alternating gradient descent.

Fix the generator’s parameters and perform a single iteration
of gradient descent on the discriminator using the real and the
generated images.
Fix the discriminator and train the generator for another single
iteration.

18 / 49

Training Model

GANs are trained by simultaneously
updating the discriminative
distribution (D, blue, dashed line) so
that it discriminates between samples
from the data generating distribution
(black, dotted line) px from those of
the generative distribution pg (G)
(green, solid line).

The lower horizontal line is the domain
from which z is sampled, in this case
uniformly. The horizontal line above is
part of the domain of x.

The upward arrows show how the
mapping x = G (z) imposes the
non-uniform distribution pg on
transformed samples.

19 / 49

Training Model

(a) Consider an adversarial pair near convergence: pg is
similar to pdata and D is a partially accurate classifier.

(b) In the step of optimizing D, it is trained to discriminate

samples from data, converging to pdata(x)
pdata(x)+pg (x) .

20 / 49

Training model

(c) After an update to G , gradient of D has guided G (z) to
flow to regions that are more likely to be classified as data.

(d) After several steps of training, if G and D have enough
capacity, they will reach a point at which both cannot improve
because pg = pdata. The discriminator is unable to
differentiate between the two distributions, i.e. D(x) = 1

2

21 / 49

Experiments

Estimate probability of the test set data under pg by fitting a
Gaussian Parzen window to the samples generated with G and
reporting the log-likelihood under this distribution.

22 / 49

Experiments

Visualization of samples from the model. These images show
actual samples from the model distributions and these samples are
uncorrelated because the sampling process does not depend on
Markov chain.
a) MNIST b) TFD c) CIFAR-10 (fully connected model) d)
CIFAR-10 (convolutional discriminator and deconvolutional
generator)

23 / 49

GAN vs. PM vs. AC1900

vs.
Jurgen’s recent single author paper: Unsupervised Minimax:
Adversarial Curiosity, Generative Adversarial Networks, and
Predictability Minimization

David Ha (Google Brain) and Jurgen recently published a
paper “World Models”

24 / 49

GAN vs. PM vs. AC1900

GAN vs. PM: Similar but also different.

25 / 49

Non-Saturating Game

The loss function of D and G are updated as follow £o

J(D) = −1

2
Ex∼pdata(x)[logD(x)]− 1

2
Ez[log(1− D(G (z)))]

J(G) = −1

2
Ez[log(D(G (z)))]

In original minimax game, the generator’s gradient vanishes
when the discriminator successfully rejects generator samples
with high confidence (meaning D(x̃) is 0).

G maximizes the log-probability of the D being mistaken. G
can still learn even when D successfully rejects all generator
samples.

26 / 49

Vanishing Gradient

The curve of loss with respect to D(G (z)). The minimax
objective’s gradients for G converge to 0 when the
discriminator is nearly perfect(D(G (z)) is 0), which makes it
hard to learn the generator.

27 / 49

Maximum Likelihood Game

The loss function of D and G are updated as follow £o

J(D) = −1

2
Ex∼pdata(x)[logD(x)]− 1

2
Ez[log(1− D(G (z)))]

J(G) = −1

2
Ez exp(σ−1(D(G (z))))

Equivalent to minimizing the KL divergence between the data
generating distribution and the model3.

θ∗ = arg min
θ

DKL(pdata(x)||pmodel(x ; θ))

3
Goodfellow, I. J. (2014). On distinguishability criteria for estimating generative models.

28 / 49

Comparison

29 / 49

Mode Collapse

Mode collapse is an empirically observed phenomenon that
distribution of G (z) is likely to fail to capture all modes of
Pdata.

e.g. GAN can only generates one subtype of images

30 / 49

Mode Collapse

The figures at the
bottom line are
results of GAN.
During all the six
training steps, GAN
fails to capture all 9
modes. In fact, GAN
only recover one
mode. The mode
captured drifts all the
time.

31 / 49

GAN Variants

UnrolledGAN: stabilize GANs by defining the generator
objective w.r.t. an unrolled optimization of the discriminator;

InfoGAN: learn disentangled representations in a completely
unsupervised manner;

CGAN: feeding the data, y, to control both the generator and
discriminator;

DCGAN: Deep Convolutional Generative Adversarial Network;

wGAN: a new algorithm to train GAN using Wasserstein
distance;

LSGAN: uses least squares loss function for the discriminator;

BEGAN: a new equilibrium enforcing method paired with a
loss derived from the Wasserstein distance;

Progressive-Growing GAN: a stable approach to training GAN
models to generate large high-quality images.

32 / 49

Unrolled GAN

Unrolled GAN prevents mode collapse by back-propagating
through a set of k updates of discriminator D to update
generator G parameters once.

Thus, G ’s chance of overfitting to a specific D reduces.

Though k updates of D are used for the update of G , only the
first update of D is kept for next round’s training. This is to
reduce D’s chance of overfitting.

33 / 49

Unrolled GAN

Original GAN

Updates of D and G :

Unrolled GAN

Update of D:

Update of G :

(LK (θD , θG) := L(θKD , θG))

34 / 49

Wasserstein GAN4

In the analysis of GAN, Optimization of G is equivalent to
minimize JS divergence of pdata(x) and pg (x).

Ex∼pdata

[
log

pdata(x)

pdata(x) + pg (x)

]
+ Ex∼pg

[
log

pg (x)

pdata(x) + pg (x)

]
= − log 4 + KL(pdata||

pdata + pg
2

) + KL(pg ||
pdata + pg

2
)

= − log 4 + 2 · JS(pdata||pg)

But the optimization is sometimes impossible by gradient
descent, especially when pdata is a manifold in high dimension
space. In these cases, gradients of G is 0 most of the time.

4
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan.

35 / 49

Wasserstein GAN
1-Wasserstein Distance(Earth-Mover Distance):

W (Pr ,Pg) = inf
γ∈Π(Pr ,Pg)

E(x ,y)∼γ ||x − y ||

Suppose Z is the uniform distribution over [0, 1].
pdata = (0,Z) ∈ R2. Our model is pg = (θ,Z). Now what will
happen?

36 / 49

Wasserstein GAN - Solution

Kantorovich-Rubinstein duality :

W (Pr ,Pg) = sup
||f ||L≤1

Ex∼Pr [f (x)]− Ex∼Pg [f (x)]

||f ||L ≤ K means K-Lipschitz condition. Note that if we replace 1
for K, then we end up with K ·W (Pr ,Pg).
Parameterize f by a neural network and boxing the the updates to
guarantee compactness.

Gradient Clipping

Gradient Penalty

37 / 49

Progressive Growing GAN5

5
Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality,

stability, and variation.

38 / 49

Applications: Vector Space Arithmetic

Arithmetic on noise vector Z. (DCGAN, 2016).
For stability, left images were generated from average value of
three noise vectors which could generate specific kinds of images.

39 / 49

Applications: Image to Image Translation

40 / 49

Applications: Image to Image Translation

Conditional GAN

D takes the pair of original image x
and translated image y as input. G
takes x and noise z as input and
tries to fake a translated image.

LL1(G) =
Ex ,y∼pdata(x ,y),z∼pz (z) [||y − G (x , z)||1]

L = LGAN(G ,D) + λLL1(G)

Defect: z is useless for G,
resulting in no stochastic outputs.

41 / 49

Applications: Next Video Frame Prediction

42 / 49

Applications: Super Resolution

A special conditional GAN.

43 / 49

Applications: Unpaired Image-to-Image Translation

44 / 49

Application: Semi-supervised Learning

Just replace Discriminator with a classifier and use
feature matching to train G .

45 / 49

Applications: Generation of Discrete Sequential Data

Let ∇J(θ) be the policy gradient of G . QGθ
Dφ

is the reward function:

∇J(θ) =
∑
y∈Y

(∇Gθ(yt |Y1:t−1))QGθ
Dφ

(Y1:t−1, yt)

QGθ
Dφ

(Y1:t−1, yt) =


Dφ(Y1:t),if t = T

1

N

N∑
n=1

Dφ(Y n
1:T),Y n

1:T ∈ MCGθ(Y1:t ;N),if t < N

46 / 49

More Discussions: Why not NLP?

GAN is working on the continuous, but not discrete data

Solution: wGAN is one way; and RL is another way

47 / 49

Conclusion

GANs are generative models that use supervised learning to
approximate an intractable cost function or a density ratio.

GANs can simulate many cost functions, including the one
used for maximum likelihood.

Adversarial training can be useful for people as well as
machine learning models

Applications include learning from very few labeled examples,
interactive artwork generation, and differential privacy.

48 / 49

Thanks.

HP: http://keg.cs.tsinghua.edu.cn/jietang/
Email: jietang@tsinghua.edu.cn

49 / 49

