
Automatic Machine Learning (AutoML)

Jie Tang

Tsinghua University

June 5, 2019

1 / 74

Overview

1 Modern Hyperparameter Optimization

2 Neural Architecture Search

3 Meta-learning

4 Conclusions

2 / 74

Successes of Deep Learning

3 / 74

One Problem of Deep Learning

Performance is very sensitive to many hyperparameters

Architectural hyperparameters

Optimization algorithm, learning rates, momentum, batch
normalization, batch sizes, dropout rates, weight decay,
data augmentation,...
Easily 20-50 design decisions

A highly trained team of human experts is necessary: data
scientists + domain experts

4 / 74

Deep Learning and AutoML

5 / 74

Learning box is not restricted to deep learning

Traditional machine learning pipeline:

Clean & preprocess the data
Select / engineer better features
Select a model family
Set the hyperparameters
Construct ensembles of models
...

6 / 74

Outline

1 Modern Hyperparameter Optimization

2 Neural Architecture Search

3 Meta-learning

4 Conclusions

7 / 74

Hyperparameter Optimization

Definition

Let

λ ∈ Λ be the hyperparameters of a ML algorithm A

L (Aλ,Dtrain,Dvalid) denotes the loss of A, using
hyperparameters λ trained on Dtrain and evaluated on Dvalid

The hyperparameter optimization (HPO) problem is to find a
hyperparameter configuration λ∗ that minimizes this loss:

λ∗ ∈ arg min
λ∈Λ

L (Aλ,Dtrain,Dvalid)

8 / 74

Types of Hyperparameters

Continuous

Example: learning rate

Integer

Example 1: #units in NN
Example 2: #neighbors in k-nearest neighbors

Categorical
Finite domain, unordered

Example 1: algorithm A ∈ {SVM, RF, NN}
Example 2: activation function σ ∈ {ReLU, sigmoid, tanh}
Example 3: operator ∈ {conv3x3,max pool, · · · }
Example 4: the splitting criterion used for decision trees

Special case: binary

9 / 74

Conditional hyperparameters

Conditional hyperparameters B are only active if other
hyperparameters A are set a certain way

Example 1:

A = choice of optimizer (Adam or SGD)
B = Adam’s momentum hyperparameter (only active if
A=Adam)

Example 2:

A= type of layer k (convolution, max pooling, fully connected,
...)
B = conv. kernel size of that layer (only active if A =
convolution)

Example 3:

A = choice of classifier (RF or SVM)
B = SVM’s kernel parameter (only active if A = SVM)

10 / 74

Conditional Hyperparameters Example

11 / 74

AutoML as Hyperparameter Optimization

CASH1 = HPO + choice of algorithm

1Chris Thornton, et al. Auto-WEKA: Combined Selection and
Hyperparameter Optimization of Classification Algorithms. In KDD 2013.

12 / 74

https://dl.acm.org/citation.cfm?id=2487629
https://dl.acm.org/citation.cfm?id=2487629

Blackbox Hyperparameter Optimization

The blackbox function is expensive to evaluate

sample efficiency is important

13 / 74

Grid Search

Each continuous hyperparameter is discretized into k
equidistant values

For categorical hyperparameters each value is used

Cartesian product of the discretized hyperparameters

ΛGS = λ
(1)
1:k1
× λ(2)

1:k2
× · · · × λ(n)

1:kn

Curse of dimensionality

Does not exploit knowledge of well performing regions

Coarse grid + Finer grid

14 / 74

Random Search

Converge faster than grid search

Easier parallelization

Flexible resource allocation

Random search is a useful baseline

Does not exploit knowledge of well performing regions

Still very expensive

15 / 74

Grid Search and Random Search

Random search works better than grid search when some
hyperparameters are much more important than others

16 / 74

Bayesian Optimization

An iterative algorithm

Fit a probabilistic model (e.g., Gaussian Process) to the
function evaluations 〈λ, f (λ)〉
Acquisition function determines the utility of different
candidate points, trading off exploration and exploitation

expected improvement (EI)

E[I(λ)] = E [max (fmin − y , 0)]

Upper confidence bound (UCB)

aUCB(λ;β) = µ(λ)−βσ(λ)

...

Popular since Mockus[1974]

Sample-efficient
Works when objective is nonconvex, noisy, has unknown
derivatives, etc
Recent results [Srinivas et al, 2010; Bull 2011; de Freitas et al,
2016; Kawaguchi et al, 2016]

17 / 74

https://link.springer.com/chapter/10.1007/3-540-07165-2_55
https://arxiv.org/ftp/arxiv/papers/1206/1206.6457.pdf
https://arxiv.org/ftp/arxiv/papers/1206/1206.6457.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf
https://papers.nips.cc/paper/5715-bayesian-optimization-with-exponential-convergence.pdf

Illustration of Bayesian optimization

18 / 74

Illustration of Bayesian optimization

19 / 74

Illustration of Bayesian optimization

20 / 74

Example: Bayesian Optimization in AlphaGo

“During the development of AlphaGo, its many
hyperparameters were tuned with Bayesian optimization
multiple times.”

“This automatic tuning process resulted in substantial
improvements in playing strength. For example, prior to the
match with Lee Sedol, we tuned the latest AlphaGo agent and
this improved its win-rate from 50% to 66.5% in self-play
games. This tuned version was deployed in the final match.”

“Of course, since we tuned AlphaGo many times during its
development cycle, the compounded contribution was even
higher than this percentage.”

21 / 74

AutoML Challenges for Bayesian Optimization

Problems for standard Gaussian Process (GP) approach:

scale cubically in the number of data points
poor scalability to high dimensions
Mixed continuous/discrete hyperparameters
Conditional hyperparameters

Simple solution used in SMAC framework2: random forests

2Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown. Sequential
Model-Based Optimization for General Algorithm Configuration. In: Coello
C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes
in Computer Science, vol 6683. Springer, Berlin, Heidelberg

22 / 74

Bayesian Optimization with Neural Networks

The simplest way: NN as a feature extractor to preprocess
inputs and then use the outputs of the final hidden layer as
basis functions for Bayesian linear regression.[Snoek et al,
ICML 2015]

Fully Bayesian neural network trained with stochastic gradient
Hamiltonian Monte Carlo.[Springenberg et al, NIPS 2016]

A variational auto-encoder can be used to embed complex
inputs into a real-valued vector such that a regular Gaussian
process can handle it.[Xiaoyu Lu et al, ICML 2018]

...

23 / 74

http://proceedings.mlr.press/v37/snoek15.pdf
http://proceedings.mlr.press/v37/snoek15.pdf
https://papers.nips.cc/paper/6117-bayesian-optimization-with-robust-bayesian-neural-networks.pdf
http://proceedings.mlr.press/v80/lu18c/lu18c.pdf

Tree of Parzen Estimators (TPE)

Non-parametric KDEs
for p(λ is good) and
p(λ is bad), rather than
p(y |λ)

Acquisition function

p(λ is good)/p(λ is bad)
Equivalent to expected
improvement

Pros:

Efficient: O (N∗d)
Parallelizable
Robust

Cons:

Less sample-efficient
than GPs

24 / 74

Tree of Parzen Estimators (TPE)

Non-parametric KDEs
for p(λ is good) and
p(λ is bad), rather than
p(y |λ)

Acquisition function

p(λ is good)/p(λ is bad)
Equivalent to expected
improvement

Pros:

Efficient: O (N∗d)
Parallelizable
Robust

Cons:

Less sample-efficient
than GPs

25 / 74

Tree of Parzen Estimators (TPE)

Non-parametric KDEs
for p(λ is good) and
p(λ is bad), rather than
p(y |λ)

Acquisition function

p(λ is good)/p(λ is bad)
Equivalent to expected
improvement

Pros:

Efficient: O (N∗d)
Parallelizable
Robust

Cons:

Less sample-efficient
than GPs

26 / 74

Population-based methods

population-based methods

maintain a population, i.e., a set of configurations
local perturbations (so-called mutations) and combinations of
different members (so-called crossover) to obtain a new
generation of better configurations

genetic algorithms, evolutionary algorithms, particle swarm
optimization...

covariance matrix adaption evolutionary strategy (CMA-ES)

samples configurations from a multivariate Gaussian whose
mean and covariance are updated in each generation based on
the success of the populations individuals.
dominating the Black-Box Optimization Benchmarking
(BBOB) challenge

27 / 74

Beyond Blackbox Hyperparameter Optimization

28 / 74

Hyperparameter Gradient Descent

Formulation as bilevel optimization problem

minλ Lval (w∗(λ), λ)
s.t. w∗(λ) = argminw Ltrain(w , λ)

Derive through the entire optimization process [MacLaurin et
al, ICML 2015]

Interleave optimization steps [Luketina et al, ICML 2016]

29 / 74

http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v48/luketina16.pdf

Probabilistic Extrapolation of Learning Curves
Humans have one advantage: when they evaluate a poor
hyperparameter setting they can quickly detect (after a few
steps of SGD) and terminate the corresponding evaluation to
save time
Mimic the early termination of bad runs using a probabilistic
model that extrapolates the performance from the first part of
a learning curve
Speed up automatic hyperparameter optimization
Parametric learning curve models [Domhan et al, IJCAI 2015]

30 / 74

https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11468/11222

Multi-Fidelity Optimization

Use cheap approximations of the blackbox, performance on
which correlates with the blackbox, e.g.

Subsets of the data
Fewer epochs of iterative training algorithms (e.g., SGD)
Shorter MCMC chains in Bayesian deep learning
Fewer trials in deep reinforcement learning
Downsampled images in object recognition

31 / 74

Multi-fidelity Optimization

Make use of cheap low-fidelity evaluations

E.g., subsets of the data (here: SVM on MNIST)

Many cheap evaluations on small subsets
Few expensive evaluations on the full data
Up to 1000x speedups [Klein et al, AISTATS 2017]

32 / 74

http://proceedings.mlr.press/v54/klein17a/klein17a.pdf

Successive Halving (SH)

For a given initial budget, query all algorithms for that budget;
then, remove the half that performed worst, double the budget
and successively repeat until only a single algorithm is left.

33 / 74

Hyperband
SH suffers from budget-vs-number of configurations trade off

try many configurations and only assign a small budget to each
may prematurely terminate good configurations

try only a few and assign them a larger budget.
may run poor configurations too long and thereby wasting
resources

34 / 74

Hyperband

Hyperhand

the outer loop iterates over different values of n and r (lines
1-2)
the inner loop invokes Successive Halving for fixed values of n
and r (lines 3-9)

35 / 74

BOHB: Bayesian Optimization & Hyperband

Combining the best of both worlds in BOHB
Bayesian optimization

for choosing the configuration to evaluate
strong final performance (good performance in the long run by
replacing HyperBands random search by Bayesian
optimization)

Hyperband

for deciding how to allocate budgets
strong anytime performance (quick improvements in the
beginning by using low fidelities in HyperBand)

36 / 74

Hyperband vs. Random Search

Biggest advantage: much improved anytime performance
37 / 74

Bayesian Optimization vs. Random Search

Biggest advantage: much improved final performance
38 / 74

Combining Bayesian Optimization & Hyperband

Best of both worlds: strong anytime and final performance
39 / 74

HPO Tools

If you have access to multiple fidelities

BOHB
Combines the advantages of TPE and Hyperband

If you do not have access to multiple fidelities

Low-dim, continuous: Gaussian Process-based BO (e.g.,
Spearmint)
High-dim, categorical, conditional: SMAC or TPE
CMA-ES

Open-source AutoML tools based on HPO: Auto-WEKA,
Hyperopt-sklearn, Auto-sklearn, TPOT, H2O AutoML...

40 / 74

Outline

1 Modern Hyperparameter Optimization

2 Neural Architecture Search

3 Meta-learning

4 Conclusions

41 / 74

Neural Architecture Search

A search strategy selects an architecture A from a predefined
search space A. The architecture is passed to a performance
estimation strategy, which returns the estimated performance
of A to the search strategy.

42 / 74

Basic Neural Architecture Search Spaces

43 / 74

Cell Search Spaces

44 / 74

Reinforcement Learning
NAS became a mainstream research topic in the machine
learning community after NAS with Reinforcement
Learning [Zoph& Le, ICLR 2017]

State-of-the-art results for CIFAR-10, Penn Treebank
Large computational demands

800 GPUs for 28 days, 12,800 architectures evaluated

Different RL approaches differ in how they represent the
agent’s policy and how they optimize it

45 / 74

https://openreview.net/pdf?id=r1Ue8Hcxg

Neuroevolution

Neuroevolution: use evolutionary algorithms for optimizing
the neural architecture (already since the 1989 3)

Optimize both architecture and weights with evolutionary
methods
Use gradient-based methods for optimizing weights and solely
use evolutionary algorithms for optimizing the neural
architecture

scale to neural architectures with millions of weights for
supervised learning tasks

3Miller, G., Todd, P., Hedge, S.: Designing neural networks using genetic
algorithms. In: 3rd International Conference on Genetic Algorithms (ICGA89)
(1989)

46 / 74

https://ieeexplore.ieee.org/abstract/document/273946
https://ieeexplore.ieee.org/abstract/document/273946
https://ieeexplore.ieee.org/abstract/document/273946

Neuroevolution

Neuroevolution algorithms

a population of models, i.e., a set of (possibly trained)
networks
in every evolution step, at least one model from the population
is sampled and serves as a parent to generate offsprings by
applying mutations to it.
mutation: local operation: adding or removing a layer, altering
the hyperparameters of a layer, adding skip connections,
altering training hyperparameters...
After training the offsprings, their fitness (e.g., performance on
a validation set) is evaluated and they are added to the
population

Neuro-evolutionary methods differ in how they sample
parents, update populations, and generate offsprings.

47 / 74

Neuroevolution

48 / 74

Comparison of evolution, RL and random search
comparing RL, evolution, and random search (RS)

RL and evolution perform equally well in terms of final test
accuracy
Evolution has better anytime performance and finds smaller
models

49 / 74

Bayesian Optimization

Joint optimization of a vision architecture with 238
hyperparameters with TPE [Bergstra et al, ICML 2013]

Auto-Net

Joint architecture and hyperparameter search with SMAC
First Auto-DL system to win a competition dataset against
human experts [Mendoza et al, AutoML 2016]

Kernels for GP-based NAS

Arc kernel [Swersky et al, BayesOpt2013]
NASBOT [Kandasamy et al, NIPS 2018]

Sequential model-based optimization

PNAS [Liu et al, ECCV 2018]

50 / 74

http://proceedings.mlr.press/v28/bergstra13.pdf
https://ml.informatik.uni-freiburg.de/papers/16-AUTOML-AutoNet.pdf
https://arxiv.org/pdf/1409.4011.pdf
https://papers.nips.cc/paper/7472-neural-architecture-search-with-bayesian-optimisation-and-optimal-transport.pdf
http://openaccess.thecvf.com/content_ECCV_2018/papers/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.pdf

Network morphisms

Network morphisms

Change the network structure, but not the modelled function
for every input the network yields the same output as before
applying the network morphism

Allow efficient moves in architecture space

Deeper, wider

51 / 74

Network morphisms

Definition

Network morphism Type I. Let f wi
i (x) be some part of a NN

f w (x), e.g., a layer or a subnetwork. We replace f wi
i by

f̃ w̃i
i (x) = Af wi

i (x) + b

The network morphism equation obviously holds for A = 1, b = 0.

Definition

Network morphism Type II. Assume f wi
i has the form

f wi
i (x) = Ahwh(x) + b for an arbitrary function h. We replace f wi

i ,
wi = (wh,A, b) by

f̃ w̃i
i (x) =

(
A Ã

)(hwh(x)

h̃wh̃(x)

)
+ b

The network morphism equation can trivially be satisfied by setting
Ã = 0.

52 / 74

Weight inheritance & network morphisms

53 / 74

Outline

1 Modern Hyperparameter Optimization

2 Neural Architecture Search

3 Meta-learning

4 Conclusions

54 / 74

Meta-learning

Given a new unknown ML task, ML methods usually start
from scratch to build an ML pipeline

Meta-learning is the science of learning to learn

Based on the observation of various configurations on previous
ML tasks, meta-learning builds a model to construct
promising configurations for a new unknown ML task leading
to faster convergence with less trial and error

55 / 74

Meta-learning v.s. Multi-task learning v.s. Ensemble
learning

Multi-task learning learns multiple related tasks simultaneously

Ensemble learning builds multiple models on the same task

They do not in themselves involve learning from prior
experience on other tasks

56 / 74

Learning to learn

Inductive bias: all assumptions added to the training data to
learn effectively

If prior tasks are similar, we can transfer prior knowledge to
new tasks

if not it may actually harm learning

57 / 74

Meta-learning

Collect meta-data about learning episodes and learn from
them

Meta-learner learns a (base-)learning algorithm, end-to-end

58 / 74

Three approaches

Learning from Model Evaluations

Learning from Task Properties

Learning from Prior Models

59 / 74

Learning from Model Evaluations

60 / 74

Top-K recommendation

Build a global (multi-objective) ranking, recommend the top-K

Requires fixed selection of candidate configurations

Can be used as a warm start for optimization techniques

61 / 74

Warm-starting with plugin estimators

What if prior configurations are not optimal?

Per task, fit a differentiable plugin estimator on all evaluated
configurations

Do gradient descent to find optimized configurations,
recommend those

62 / 74

Configuration space design
Prior evaluations can also be used to learn a better
configuration space Θ∗

speed up the search as more relevant regions of the
configuration space are explored

Functional ANOVA: hyperparameters are important if they
explain most of variance
Tunability: learn an optimal hyperparameter, and define
hyperparameter importance as the performance gain by tuning

63 / 74

Learning from Task Properties

Another rich source of meta-data are characterizations
(meta-features) of the task at hand

64 / 74

Meta-Features

65 / 74

Warm-starting from similar tasks

Find k most similar tasks, warm-start search with best λi

Collaborative filtering: configurations λi are “related” by tasks
tj

66 / 74

Learning from Prior Models

67 / 74

Transfer Learning
Select source tasks, transfer trained models to similar target
task
Use as starting point for tuning, or freeze certain aspects
Reinforcement learning: start policy search from prior policy
Neural networks: both structure and weights can be
transferred

Large image datasets (e.g. ImageNet)
Large text corpora (e.g. Wikipedia)

Fails if tasks are not similar enough

68 / 74

Few-shot learning
Learn how to learn from few examples (given similar tasks)
Meta-learner must learn how to train a base-learner based on
prior experience
Parameterize base-learner model and learn the parameters

cost (θi) =
1

|Ttest|
∑

t∈Ttest

loss (θi , t)

69 / 74

Few-shot learning: approaches

Existing algorithm as meta-learner:

LSTM + gradient descent
Learn Θinit+ gradient descent
KNN-like: Memory + similarity
Learn embedding + classifier
...

Black-box meta-learner:

Neural Turing machine (with memory)
Neural attentive learner
...

70 / 74

Model-agnostic meta-learning4

4Finn, Chelsea, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. International Conference
on Machine Learning, 112635.

71 / 74

https://dl.acm.org/citation.cfm?id=3305498
https://dl.acm.org/citation.cfm?id=3305498
https://dl.acm.org/citation.cfm?id=3305498

Outline

1 Modern Hyperparameter Optimization

2 Neural Architecture Search

3 Meta-learning

4 Conclusions

72 / 74

AutoML: Further Benefits and Concerns

Democratization of data science :)

We directly have a strong baseline :)

Reducing the tedious part of our work, freeing time to focus
on problems humans do best (creativity, interpretation,...) :)

People will use it without understanding anything :(

73 / 74

Thanks.

HP: http://keg.cs.tsinghua.edu.cn/jietang/
Email: jietang@tsinghua.edu.cn

74 / 74

	Modern Hyperparameter Optimization
	Neural Architecture Search
	Meta-learning
	Conclusions

