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Al Adoption: Requirements
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OP-ED CONTRIBUTOR

I Motivation (1) Opimion &he New Nork Times

| Criminal Justice When a Computer
» People wrongly denied parole ngram Keeps You in Jall

» Recidivism prediction

n any way, in whole or

nales 2018 All rights reserved

By Rebecca Wexler

» Unfair Police dispatch June 13, 2017 f v = A

nytimes.com/2017/06/13/opinion/how-computers-are-harming-criminal-justice.html

= ACLU GETUPDATES / DONATE Q HOW we AnaIYZEd the
COMPAS Recidivism Algorithm

by Jeff Larson, Surya Mattu, Lauren Kirchner and Julia Angwin

STATEMENT OF CONCERN ABOUT PREDICTIVE
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POLICING BY ACLU AND 16 CIVIL RIGHTS PRIVACY, May 23,2016

RACIAL JUSTICE, AND TECHNOLOGY . , o ,

ORGANIZATIONS propublica.org/arficle/how-we-analyzed-the-compas-recidivism-algorithm
. 00006

aclu.org/other/statement-concern-about-predictive-policing-aclu-and-1é6-civil-rights-privacy-racial-justice
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| Finance: = FICO

CYMMUNITY

1able Machine Learning Challenc

- & ‘

. P community.fico.com/s/explainable-machine-learning-challenge
The Big Read Artificial intelligence

Insurance: Robots learn the
business of covering risk

» Credit scoring, loan approval

-

2 Insurance quotes

- © Thales 2018 All rights reserved

Artificial intelligence could revolutionise the industry but may also allow
clients to calculate if they need protection

, f in n Save

Oliver Ralph MAY 16, 2017 [ 24

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales
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I Motivation (3) B9 Stanford
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B

| Healthcare

¥ MEDICINE | NewsCenter

=D

Researchers say use of artificial intelligence in medicine raises

> Applying ML methods in ethical questions

medical care is problematic.

In a perspective piece, Stanford researchers discuss the ethical implications of using

ra- i
> Al as 3 por’ry OCTOF N machine-learning tools in making health care decisions for patients.
physician-patient relationship
Patricia Hannon ,https://med.stanford.edu/news/all-news/2018/03/researchers-say-use-

> Responsi b|||‘|'y, Conﬁdenﬁg ||‘|'y2 of-ai-in-medicine-raises-ethical-questions.html

2 Learning must be done with

available data. Intelligible Models for HealthCare: Predicting Pneumonia

Cannot randomize cares Risk and Hospital 30-day Readmission

given to patients!

MRich %gruanah ik d\I(inCLou Joha?ﬂnes Gfehrke
. icrosoft Researc inkedIn Corporation . icrosoft
rcaruana@microsofrt.com lou@linkedin.com Johannes@microsoit.com
2 Must validate models before @ ft ylou@ hannes@ ft
use Paul Koch Marc Sturm Noémie Elhadad
° Microsoft Research NewYork-Presbyterian Hospital Columbia University
paulkoch@microsoft.com mas9161@nyp.org  noemie.elhadad@columbia.edu

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, Noemie Elhadad:
Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day

Readmission. KDD 2015: 1721-1730
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I Motivation (4)

i | Critical Systems

https://www.sncf.com/sncv1/ressources/presskit__train_a
utonome__september_2019_v2.pdf
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Trustable Al and eXplainable Al: a Reality Need

1

] The need for explainable Al rises with the potential cost of poor decisions

COST OF POOR DECISIONS

Industrial / Military Enterprise
Quality Incident
Cyber Threat Industrial Inspection . Investigation
Detection Medical '
Controls . Diagnosis
Jet Engine Project Risk Fraud
Prediclive Monitoring v Detection
Maintenance Credit Risk Case Load
Profiling Processing
Self-Driving . : Auditin
Optimization Pricing Scheduling
Consumer Professional
Machine Speech ! L
Translation Recognition Fashion Medical Image
Face Recommendation Interpretation
Most prominent Sk Recogpnition i Automated
SUCCESSes _— ecommendation Recommendation Trading
of Al to date Friends Mentor Data
Suggestions Recommendation Labeling
Search Result Spam Mail £ :
: T itness Compliance
Ranking Filtering Coaching Monitoring
Ad Placement
— >

Source: Accenture

HUMAN PARTICIPATION

Source: Accenture Point of View. Understanding Machines: Explainable Al. Freddy Lecue, Dadong Wan

S—

Most impactful
successes
of Al to come
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I Explanation in Al

Explanation in Al aims to create a suite of techniques that produce
more explainable models, while maintaining a high level of
searching, learning, planning, reasoning performance: optimization,
accuracy, precision; and enable human users to understand,
appropriately trust, and effectively manage the emerging generation
of Al systems.

This document may not be reproduced, modified, adapted, published, tfranslated, in any way, in whole orin
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.
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I Oxford Dictionary of English

explanation | skspla'nerf(s)n |

noun

By a statement or account that makes something clear: the birth rate is central to any explanation of
population trends.

Models, Outputs of the Intelligent System

interpret | mn'terprit |

verb (interprets, interpreting, interpreted) /with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.

;_ Models, Outputs of the Intelligent System
b THALES
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I XAl: One Objective, Many ‘Al’s, Many Definitions, Many Approaches

Artificial
Intelligence

2018 All rights reserved.
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XAl: One Objective, Many ‘Al’s, Many Definitions, Many Approaches

2018 All rights reserved.
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XAl: One Objective, Many ‘Al’s, Many Definitions, Many Approaches

How to summarize the

Feature Surrogate reasons (motivation,
Importance Model justification, Artificial
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I XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches
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XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches
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XAl: One Objective, Many ‘Al’s, Many Definitions, Many Approaches
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I Overview of explanation in different Al fields (1)

n

| Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linearregression,
Logistic regression,
Decision Tree,
GLMs,

GAMs

KNNs

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved
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| Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linearregression,
» Logistic regression,
« Decision Tree,

« GLMs,

« GAMs

« KNNs

Data: titanic naive Bayes Expl

Model: NB
Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes
Feature Contribution Value
Class = 3rd

adult

female

Naive Bayes model

Igor Kononenko. Machine learning for medical
37 diagnosis: history, state of the art and perspective.
Artificial Intellicence in Medicine, 23:89-109, 2001.
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| Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linearregression,

» Logistic regression,
« Decision Tree,

ety @ v

¢« GLMs,

o GAMs

* KNNs Counierfactual
Data: titanic naive Bayes Expl WhCﬂ'- |f

Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

Feature Contribution Value
Class = 3rd
Age = adult

Sex = female

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:

Explaining Explanations in
Al. FAT 2019: 279-288

Rory Mc Grath, Luca
Costabello, Chan Le Van,
Paul Sweeney, Farbod
Kamialb, Zhao Shen, Freddy
Lécué: Interpretable Credit

Naive Bayes model

Igor Kononenko. Machine learning for medical
38 diagnosis: history, state of the art and perspective.

Applicatfion Predictions With
Counterfactual
Explanations. CoRR
abs/1811.05245 (2018)

Artificial Intellicence in Medicine, 23:89-109, 2001.
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| Machine Learning (except Artificial Neural Network)

Interpretable Models:
* Linearregression,
» Logistic regression,
« Decision Tree,

« GLMs,

« GAMs

« KNNs

Data: titanic

Model: NB

Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

naive Bayes Expl

Feature Contribution Value
Class = 3rd
Age = adult
Sex = female

Naive Bayes model

Igor Kononenko. Machine learning for medical

39  diagnosis: history, state of the art and perspective.

Artificial Intellicence in Medicine, 23:89-109, 2001.

Counierfactual
What-if

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:

Explaining Explanations in
Al. FAT 2019: 279-288

Rory Mc Grath, Luca
Costabello, Chan Le Van,
Paul Sweeney, Farbod
Kamialb, Zhao Shen, Freddy
Lécué: Interpretable Credit
Applicatfion Predictions With
Counterfactual
Explanations. CoRR
abs/1811.05245 (2018)
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Overview of explanation in different Al fields (2)
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Network f(z1, a:2)
Attributions at 7 = 3,22 = 1
Integrated gradients x; = 1.5, =

- ©Thales 2018 All rights reserved.

-0.5

2 =
DeepLift ry = 1.5, 22 = —0.5
LRP I = 1.5, 2 = —0.5
e

.
x=1 'L_g.:;j'*;—:’,"'-“w i > S
Network g(x1, x2)
Attributions at z; = 3,22 = 1

Integrated gradients z; = 1.5, 2 = —0.5

DeepLift =2, 22 = -1
LRP T =2, :L‘z=—1
Atiribution for Deep

Network (Integraied grodient-bused)

<

ukund Sundararajan, Ankur Taly, and Qigi
n. Axiomatic attribution for deep
tworks. In ICML, pp. 3319-3328, 2017.

> <
O Q

This document may not be reproduced, modified, adapted, published, tfranslated, in any way, in whole orin

part or disclosed to a third party without the prior written consent of Thales

Avanti Shrikumar, Peyton Greenside, Anshul
Kundaje: Learning Important Features
Through Propagating Activation
4Bifferences. ICML 2017: 3145-3153

| Machine Learning (only Artificial Neural Network)
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| Machine Learning (only Artificial Neural Network)
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Network f(z1, a:2)
Attributions at 7 = 3,22 = 1
Integrated gradients x; = 1.5, zo = —0.5
DeepLift 1 =15, z2 = —0.5
LRP z = 1.5, 22 = —0.5
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- ©Thales 2018 All rights reserved.

Network g(z1, x2)
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DeepLift =2, 22 = -1
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output of
prototype
classifier
neswork
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Atiribution for Deep
Network (Integraied grodient-bused) e

input
(g=f)x)

<

ukund Sundararajan, Ankur Taly, and Qigi

n. Axiomatic attribution for deep
tworks. In ICML, pp. 3319-3328, 2017. Auto-encoder

> <
O Q
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Explanation of Agent Conflicts &
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Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207

THALES



I Overview of explanation in different Al fields (7)

- © Thales 2018 All rights reserved

£
e}
Q0
o}
<
2
£
>
o
2
>
c
o}
£
i}
2
k)
%
=
o
o
o}
Ky
=
o)
2
a
o
2
Q
o}
o
o}
o
Ko

part or disclosed to a third party without the prior written consent of Thales

This document may not be reproduced, mo

a8

| Multi-agent Systems

MAS INFRASTRUCTURE

INDIVIDUAL AGENT INFRASTRUCTURE

Logging, Acivity Visualization, Launching

MAS INTEROPERATION INTEROPERATION
Translation Services Interoperation Services Interoperation Modules
CAPABILITY TO AGENT MAPPING CAPABILITY TO AGENT MAPPING
Middle Agents Middle Agents Components
NAME TO LOCATION MAPPING NAME TO LOCATION MAPPING
ANS ANS Component
SECURITY SECURITY
Ci ity C Services Security Module private/public Keys
PERFORMANCE SERVICES PERFORMANCE SERVICES
MAS Monitoring Reputation Services Performance Services Modules
MULTIAGENT MANAGEMENT SERVICES MANAGEMENT SERVICES

Logging and Visualization Compenents

ACL INFRASTRUCTURE

ACL INFRASTRUCTURE

Machines, OS, Network

Public Ontology Protocols Servers ACL Parser Private Ontology  Protocol Engine
COMMUNICATION INFRASTRUCTURE COMMUNICATION MODULES
Discovery Message Transfer Di y Ci Tranfer Module

OPERATING ENVIRONMENT

Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts &
Harmful Interactions

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen,
Joseph A. Giampapa: The RETSINA MAS Infrastructure.
Autonomous Agents and Multi-Agent Systems 7(1-2):

29-48 (2003)

)
@ Agent(s)

Domain .
)

\

Strategy

Application Intelligent Strategy ‘
g World States _
Domain = fedresentation =21 States 1  Summary - User
Characteristic Extraction Interface =

| 1 J

Agent Strategy Summarization
Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207

ey ROE was achieved and
the bogey was a radar -contact and
the bogey was the primary-threat.
Otherwise, if
the intercept geometry were not selected or
ROE were not achieved or
the bogey were not a radar-contact or
there was no primary-threat,
1'would have achieved proximity to the bogey.
| concluded that the bogey achieved ROE because
the bogey was a bandit and
1 had received positive ID from the E2C and
clectronic positive ID was attained.

o] (oo ] [o=] (o]

Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks,
Karel van den Bosch, Catholijn M. Jonker, John-
Jules Ch. Meyer: Do You Get It2 User-Evaluated
Explainable BDI Agents. MATES 2010: 28-39

W. Lewis Johnson: Agents that
Learn fo Explain Themselves.
AAAI 1994: 1257-1263
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Hui Liu, Qingyu Yin, Wiliam Yang Wang: Towards Explainable NLP: A
Generative Explanation Framework for Text Classification. CoRR

Gehrmann, Hanspeter Pfister,
Alexander M. Rush: LSTMVis: A

Fixample #3016 True Class: . Atheism L instuctons J{ Proviaus J{ Neo ]
Algorithm 1 Algoarithm 2
Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
Fine-grained Gop @ roen posing @ svesn
H H mean) Prediction correct: Hosy Prediction correct:
explanations are in b
yone| J Re| J
the form of: - by
. Koresh| in|
+ textsin areal- teongh Nan
W0r|d dOTOSeT; Document ‘ Document
1 From: pauld@verdix.com (Paul Durbin) From: pauld@ verdix.com (Psul Durbin)
i ° N U merl CO | Subject: ;:: D:\?gEORESEf IS! GOD! Subject: l‘:r DAVID CORES:{ lSI: G.ODY
Nntp-Posting-Host: sarge.hg.verdix.com Nntp-Posting-Host: sarge.hg.verdix.com
SC O res Organization: Verdix Corp Organization: Verdix Corp
Lines: 8 Lines: 8

LIME for NLP

Marco TUlio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust
You?": Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144

Hendrik Strobelt, Sebastian
Gehrmann, Michael Behrisch,
Adam Perer, Hanspeter Pfister,
Alexander M. Rush: Seg2seg-
Vis: A Visual Debugging Tool for
Sequence-to-Sequence

Grapn 25(1): 355.363 (2019) THALES
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Hui Liu, Qingyu Yin, Wiliam Yang Wang: Towards Explainable NLP: A
Generative Explanation Framework for Text Classification. CoRR

Example = of True Class: . Atheism m @ @
Algorithm 1 Algoarithm 2
Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
GOD)| . Atheilsm Posting| . Atheism
mean) Prediction correct: Hosy Prediction correct:
anyone J Re| J
this| by|
Koresh in)
through| Natp
Document Document
From: pauld@verdix.com (Paul Durbin) From: pauld@ verdix.com (Psul Durbin)
Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hg.verdix.com Nntp-Posting-Host: sarge.hg.verdix.com
Organization. Verdix Corp Organization: Verdix Corp
Lines: 8 Lines: 8

LIME for NLP

Marco TUlio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust
You?": Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144

abs/1811.00196 (2018)

Hendrik Strobelt, Sebastian
Gehrmann, Hanspeter Pfister,
Alexander M. Rush: LSTMVis: A
Tool for Visual Analysis of
Hidden State Dynamics in
Recurrent Neural Networks. IEEE
Trans. Vis. Comput. Graph.
24(1): 667-676 (2018)
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I Overview of explanation in different Al fields (9)

| Planning and Scheduling

[ Explanation Type [T RT [ R2Z [ R3 | R4 |
Plan Patch Explanation / VAL
Model Patch Explanation
Minimally Complete Explanation
Minimally Monotonic Explanation
(Approximate) Minimally Complete Explanation
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Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing
Explanations for Al Planner Decisions. CoRR abs/1810.06338 (2018)

m’_ Knowledge Problem
Base Interface

Question/Suggestion new model

XAl-Plan

new plan

Response/Comparison
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Base Interface
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new model

Planner
Interface

Question/Suggestion
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XAl-Plan

Response/Comparison

XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing
Explanations for Al Planner Decisions. CoRR abs/1810.06338 (2018)
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Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning.
CORR abs/1709.10256 (2017)

(Manual) Plan Comparison
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Start and finish point for
subroute on each floor of
each building

taken for subroute on
each floor of each build-
ing

Total distance and angles
for subroute on each floor
of each building

£3

6 <

:: | Roboti

28 ODOITICS

3c

£0

S=

o<

2

=

£]

o] il

g § 77?

5 O 35

Be 7 [

S©

2, e

9 ¥4,

o

@

g

§ Abstraction, A

aQ

5 Level 1 Level 2 Level 3 Level 4

9] . z

5 e . Total distance and time | Total distance and time 3 :

Q Start and finish point of SR Starting and ending land-
S the complete route taken for the complete | taken for the complete | 1k of complete route
S route route

3 Total distance and time Starting and ending land-

mark for subroute on
each floor of each build-
ing

Specificity, S

Start and finish points of
complete route plus ime
taken for each edge of

Angle twmed at each
point plus the total dis-
tance and time taken for

Turn direction at each
point plus total distance

All landmarks encoun-
tered on the route

Detailed
Narmative

for each edge of route

route each edge of route

Narration of Autonomous Robot Experience

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration
of autonomous robot experience. In IJCAI, pages 862-868. AAAI Press, 2016.
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£3
>
g I R fo) b oﬁ cS b y=m Robot: | have decided to turn left.
£ Lo F& Human: Why did you do that?
g ,/\\;, gises Robot: Tbelieve that the correct action is to turn left
= g BECAUSE:
I 7507 T'm being asked to go forward
g S: AND This area in front of me was 20 cm higher than me
< *highlights area*
© s AND the area to the left has maximum protrusions of less
i than 5 cm *highlights area*®

AND I'm tilted to the right by more than 5 degrees.
Here is a display of the path through the tree that lead to
Abstraction, A this decision. *displays tree*®

Level 1

Level 2

Level 3

Level 4

Start and finish point of
the complete route

Total distance and time
taken for the complete
route

Total distance and time
taken for the complete
route

Starting and ending land-
mark of complete route

Start and finish point for
subroute on each floor of
each building

‘Total distance and time
taken for subroute on
each floor of each build-
ing

Total distance and angles
for subroute on each floor
of each building

Starting and ending land-
mark for subroute on
each floor of each build-
ing

Specificity, S

Start and finish points of
complete route plus ime
taken for each edge of

Angle twmed at each
point plus the total dis-
tance and time taken for

Turn direction at each
point plus total distance

All landmarks encoun-
tered on the route

Human: How confident are you in this decision?

Robot: The distribution of actions that reached this leaf
node is shown in this histogram. *displays histogram™
This action is predicted to be correct 67% of the time.

Human: Where did the threshold for the area in front come
from?

Robot: Here is the histogram of all training examples that
reached this leaf. 80% of examples where this area was

Detailed
Narmative

for each edge of route

route each edge of route above 20 cm predicted the appropriate action to be “drive

forward”.

Narration of Autonomous Robot Experience
From Decision Tree to human-friendly
information

Raymond Ka-Man Sheh: "Why Did You Do That?2" Explainable
Intelligent Robots. AAAI Workshops 2017
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. | Reasoning under uncertainty

n
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XAl: One Objective, Many Metrics

Comprehensibility

How much effort
for correct human
interpretatione

69
I— Source: Accenture Point of View. Understanding Machines: Explainable Al. Freddy Lecue,

Succinctness

How concise and
compactis the
explanatione

Actionability

What can one
action, do with
the explanation?2

Reusability

Could the
explanation be
personalized?

Accuracy

How accurate
and precise is the
explanatione

Completeness

Is the explanation
complete, partial,
restricted?
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I Knowledge Graph Embeddings in Machine Learning
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Knowledge Graph for Decision Trees

1
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1/decision-tfree-too-large-to-interpret
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I Knowledge Graph for Deep Neural Network (1)
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I Knowledge Graph for Deep Neural Network (2)
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Knowledge Graph for Personalized XAl

Description 1: This is an orange train accident <========*"'

Description 2: This is an frain accident between two
speed merchant trains of characteristics X43-B and ottt
Y33-C in a dry environment

Description 3: This is a public transportation accident <==--
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Proceedings of the Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2018)

Knowledge-Based Transfer Learning Explanation

B

Jiaoyan Chen

Department of Computer Science
University of Oxford, UK

Jeff Z. Pan

Department of Computer Science
University of Aberdeen, UK

Huajun Chen
College of Computer Science, Zhejiang University, China
Alibaba-Zhejian University Frontier Technology Research Center

- “How to explain transfer learning with
appropriaie knowledge
representation?

Freddy Lecue
INRIA, France
Accenture Labs, Ireland

lan Horrocks

Department of Computer Science
University of Oxford, UK
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I Obstacle Identification Certification (Trust) - Transportation

n

kel
19)
4
9]
a
o
2
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Challenge: Public transportation is getting more and more self-
driving vehicles. Even if trains are getting more and more
autonomous, the human stays in the loop for critical decision, for
instance in case of obstacles. In case of obstacles trains are
required to provide recommendation of action i.e., go on or go
back to station. In such a case the human is required to validate the
recommendation through an explanation exposed by the train or
machine.

Al Technology: Integration of Al related technologies i.e., Machine
Learning (Deep Learning / CNNs), and semantic segmentation.

XAl Technology: Deep learning and Epistemic uncertainty

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or
selesad fo a third party without the prior written g _C 8
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Explainable On-Time Performance - Transportation
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KLM / Transavia Flight Delay Prediction

PLANE INFO ARRIVAL TURNAROUND DEPARTURE

Status / Adreraft Flight ETA Status Delay Code Gate Slot  Progress Milestones Flight ETA  Sustus Delay Code

© utwst v
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§J§ooyon Chen, Freddy Lécué, Jeff Z. Pan, lan Horrocks, Huajun Chen: Knowledge-
E@sed Transfer Learning Explanation. KR 2018: 349-358

= Q

Nicholas McCarthy, Mohammad Karzand, Freddy Lecue: Amsterdam to Dublin
Eventually Delayed? LSTM and Transfer Learning for Predicting Delays of Low Cost
A[.Z.%es: AAAI 2019

Challenge: Globally 323,454 flights are delayed every year. Airline-
caused delays totaled 20.2 million minutes last year, generating
huge cost for the company. Existing in-house technique reaches
53% accuracy for predicting flight delay, does not provide any time
estimation (in minutes as opposed to True/False) and is unable to
capture the underlying reasons (explanation).

Al Technology: Integration of Al related technologies i.e., Machine
Learning (Deep Learning / Recurrent neural Network), Reasoning
(through semantics-augmented case-based reasoning) and Natural
Language Processing for building a robust model which can (1)
predict flight delays in minutes, (2) explain delays by comparing
with historical cases.

XAl Technology: Knowledge graph embedded Sequence Learning
using LSTMs
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Portfolio Overview
Contract Lifecycle
View all Contracts »
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Contract Stat

Joha Smith

100%
Contract End

Jiewen Wu, Freddy Lécué, Christophe Guéret, Jer Hayes, Sara van de Moosdijk,
Gemma Gallagher, Peter McCanney, Eugene Eichelberger: Personalizing
Actions in Context for Risk Management Using Semantic Web Technologies.
Intfernational Semantic Web Conference (2) 2017: 367-383

Explainable Risk Management - Finance

Challenge: Accenture is managing every year more than 80,000
opportunities and 35,000 contracts with an expected revenue of
$34.1 billion. Revenue expectation does not meet estimation due
to the complexity and risks of critical contracts. This is, in part,
due to the (1) large volume of projects to assess and control, and
(2) the existing non-systematic assessment process.

Al Technology: Integration of Al technologies i.e., Machine
Learning, Reasoning, Natural Language Processing for building a
robust model which can (1) predict revenue loss, (2) recommend
corrective actions, and (3) explain why such actions might have a
positive impact.

XAl Technology: Knowledge graph embedded Random Forrest
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Explainable anomaly detection - Finance (Compliance)

: Accenture Intelligent Finance System accenture

Expansas Overview of Ausin vs, other Cities + Cantrol Panel +
Data analysis

W for spatial interpretation
7]  of abnormalities:

s s abnormal expenses

Expersas  Poogle

P ] —

e Semantic explanation
(structured in classes:
fraud, events, seasonal)

P —— of abnormalities

Ssou Cyrarrics 4.3, Exseeal Enest

E s : i a8 : Detailed semantic
8 ( 3 5: Vit explanation (structured Freddy Lécué, Jiewen Wu: Explaining and predicting
8 in sub classes e.g. abnormal expenses at large scale using knowledge
8 : categories for events) graph based reasoning. J. Web Sem. 44: 89-103

P - o - we (2017)

o)
S
S

£ Al Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the problem from a
S Statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real data from (i) travel and expenses
= from Accenture, (ii) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase version of Wikipedia) and social events from

Eventful, for explaining abnormalities.
THALES
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I Counterfactual Explanations for Credit Decisions (1) - Finance

% Challenge: We predict loan applications with off-the-shelf,

% . interchangeable black-box estimators, and we explain their

s I LOCCI', pOS'l'-hOC, contrastive predictions with counterfactual explanations. In counterfactual

o o explanations the model itself remains a black box; it is only

‘ eXplanﬂ'IOﬂS Of blCle-bOX through changing inputs and outputs that an explanation is
classifiers obtained.

Al Technology: Supervised learning, binary classification.

| Required minimum change
el ° XAl Technology: Post-hoc explanation, Local explanation,
In Inpr VeC‘I'Of 1'0 ﬂlp the Counterfactuals, Interactive explanations
decision of the classifier.

x, > Y!
. . ~
| Interactive Contrastive Change to
. AX=7?| desired
Explanations f outcome
X > Y

ICan remain as black boxI
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Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions
With Counterfactual Explanations. FEAP-Al4fin workshop, NeurlPS, 2018.
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I Counterfactual Explanations for Credit Decisions (2) - Finance
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Sorry, your loan application has been rejected.

Our analysis:

The following features were 1

PercentinstaliTrad

NetFractionInstall

PercentTradesWB

The following features wore

MSinceOldestTrad AverageMinFile NumTotalTrades

The following features require changes: l I

MaxDelq2Publicl

@ lrputValve @) Increase By () Decrease By

ENNE L

.V','j. 2 Delg Ew
MaxDelgEver A T w)—- w (
2t

Counterfactuals suggest where to increase (green, dashed) or decrease (red, striped) each feature.

ol
e

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions

With Counterfactual Explanations. FEAP-Al4fin workshop, NeurlPS, 2018.

les
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I Counterfactual Explanations for Credit Decisions (3) - Finance

-

n

External Risk Estimate
o :
66

M Since Oldest Trade Open
o—i

{}’j Drag sliders to change constraints.

oo

Q*ﬂ‘

113

M Since Most Recent Trade O...

By

2

Average M In File
® A

g

45

Num Satisfactory Trades

dm Select categorical constraints.

Max Delq 2 Public Rec Last 12M

Current: unknown delinquency

10 selected

Max Delq Ever
Current: 60 days delinquent

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or

part or disclose« "’

o

<
CS

RECOMMENDED CHANGES

=2V

-66V
-54v¥ ”
I I i ]

M Since Oldest  Average M In File Num Satisfactory
Trade Open Trades

Percent Install Net Fraction  Net Fraction Install Num Revolving  Num Bank 2 Natl
Trades Revolving Burden Burden Trades W Balance  Trades W High
Utilization

@ InputValue [ IncreaseBy ([ Decrease By

With Counterfactual Explanations. FEAP-Al4fin workshop, NeurlPS, 2018.
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Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions
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Breast Cancer Survival Rate Prediction - Health

predxct

breast cancer
Age at
e - 69 +
Post

pausal? 0 Yes No Unknown
ER status 0 Positive = Negative

Positive = Negative Unknown

Positive Negative Unknown

o Screening = Symptoms = Unknown
Positive nodes 6 - 2 -

e Yes No

Unknown

los

Results

Cuyrves Chart Texts

New recording

lcons

These results are for women who have already had surgery. This table

shows the percentage of women who survive at least 5 10 15 years

after surgery, based on the information you have provided.

Treatment Additional Benefit Overall Survival %
Surgery only - 72%
+ Hormone therapy 0% 72%

If death from breast cancer were excluded, 82% would survive at

least 10 years. o
Show ranges? o Yes No

Challenge: Predict is an online tool
that helps patients and clinicians
see how different treatments for
early invasive breast cancer might
improve survival rates after surgery.

Al Technology: competing risk
analysis

XAl Technology: Interactive
explanations, Multiple
representations.

David Spiegelhalter, Making Algorithms trustworthy, NeurlPS 2018 Keynote

predict.nhs.uk/tool
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(Some) Tutorials, Workshops, Challenge

Tutorial:

I AAAI 2019 Tutorial on On Explainable Al: From Theory to Motivation, Applications and Limitations (#1) - https://xaitutorial2019.github.io/

| ICIP 2018 / EMBC 2019 Interpretable Deep Learning: Towards Understanding & Explaining Deep Neural Networks (#2) -
hitp://interpretable-ml.org/icip2018tutorial/ - hitp://interpretable-ml.org/embc201tutorial/

Workshop:

ISWC 2019 Workshop on Semantic Explainability (#1) - hitp://www.semantic-explainability.com/

[JCAI 2019 Workshop on Explainable Artfificial Intelligence (#3) - hitps://sites.google.com/view/xai2019/home

[JCAI 2019 Workshop on Optimisation and Explanatfion in Al (#1) - https://www.doc.ic.ac.uk/~kc2813/OXAl/

ICAPS 2019 Workshop on Explainable Planning (#2)- hitps://kcl-planning.github.io/XAIP-Workshops/ICAPS 2019

ICCV 2019 Workshop on Inferpreting and Explaining Visual Arfificial Infeligence Models (#1) - hitp://xai.unist.ac.kr/workshop/2019/

NeurlPS 2019 Workshop on Challenges and Opportunities for Al in Financial Services: the Impact of Fairness, Explainability, Accuracy, and
Privacy - htips://sites.google.com/view/feap-ai4fin-2018/

| CD-MAKE 2019 — Workshop on Explainable Al (#2) - https://cd-make.net/special-sessions/make-explainable-ai/

I AAAI2019 / CVPR 2019 Workshop on Network Interpretability for Deep Learning (#1 and #2) - http://networkinterpretability.org/ -
hitps://explainai.net/

Challenge:

| 2018: FICO Explainable Machine Learning Challenge (#1) - https://community.fico.com/s/explainable-machine-learning-challenge

THALES
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DeepExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability. github.com/marcoancona/DeepExplain

iNNvestigate: A foolbox fo iINNvestigate neural networks' predictions. github.com/albermax/innvestigate

SHAP: SHapley Additive exPlanations. github.com/slundberg/shap

GANDissect: Pytorch-based tools for visualizihg and understanding the neurons of a GAN. https://github.com/CSAILVision/GANDissect

ELI5: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-Memex/elis

Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

Yellowbrick: Visual analysis and diagnostic fools fo facilitate machine learning model selection. github.com/DistrictDatalabs/yellowbrick

Lucid: A collection of infrastructure and tools for research in neural network inferpretability. github.com/tensorflow/lucid

LIME: Agnostfic Model Explainer. https://github.com/marcotcr/lime

Sklearn_explain: model individual score explanation for an already trained scikit-learn model. hitps://github.com/antoinecarme/sklearn_explain

Heatmapping: Prediction decomposition in ferms of confributions of individual input variables

Deep Learning Investigator: Investigation of Saliency, Deconvnet, GuidedBackprop and more. https://github.com/albermax/innvestigate

Google PAIR What-if: Model comparison, counterfactual, individual similarity. hitps://pair-code.github.io/whai-if-tool/

IBM Al Fairness: Set of fairness metrics for datasets and ML models, explanations for these metrics. hitps://github.com/IBM/qif360

Blackbox audifing: Auditing Black-box Models for Indirect Influence. https://github.com/algofairness/BlackBoxAuditing

Model describer: Basic stafiscal meftrics for explanation (visualisation for error, sensifivity). https://github.com/DataScienceSquad/model-describer

THALES
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(Some) Initiatives: XAl in USA

Challenge TA 1: s Deep TA 2:

Learners k) " Teams Model of
: Explanation

Two .‘;‘;‘.3?:5325:2";“ Teams that provide
e B A orototype systems 4 Interpretable
with both i ER j Model
components: At B 7 Teams
) E/ngclgrable - * Psych. Theory Explanation
. Exolanati > ' Model of Explanation Effectiveness
In)chr?;felon P T Induction * Computationa Exolanati
! xplanation
: Teams | Model ’

. Measures
e Consultin . .
9 User Satisfaction

Mental Model
Aut Task Performance
utonom
AdoPlot & Evaluator Trust Assessment
SITL Simulation Correctability

Learning
Performance

TA1: Explainable Learners
2 Explainable learning systems that include both an explainable model and an explanation interface
TA2: Psychological Model of Explanation

» Psychological theories of explanation and develop a computational model of explanation from those theories



I (Some) Initiatives: XAl in Canada
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| DEEL (Dependable Explainable Learning) Project 2019-2024
2 Research instfitutions

Ascrinn ¥ %ivano Q NSERC

i
. “I

-

2 Industrial partners

sy
5SS e BOMBARDIER —cax THALES

» Academic partners
- Science and technology to develop new methods towards Trustable and Explainable Al

.". l
< = ) POLYTECHNIQUE
(ﬁ?‘:ﬁﬁxu;mm |-;’ 'MONTREAL

Certificability
- Structural warranties Explicability &
Interpretability

el UNIVERSITE

o LAVAL

System Robustness
- To biased data

Privacy by design
- Differential privacy
- Homomorphic coding

- Risk auto evaluation
- External audit

- Of algorithm
- To change
- To attacks

- Collaborative learning
- To attacks
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(Some) Initiatives: XAl in EU
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Conclusion
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| Explainable Al is motivated by real-world applications in Al

| Not a new problem - a reformulation of past research challenges in Al

| Multi-disciplinary: multiple Al fields, HCI, social sciences (multiple
definitions)

| In Al (in general): many interesting / complementary approaches

THALES
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I Future Challenges

| Creating awareness! Success stories!

| Foster multi-disciplinary collaborations in XAl research.
| Help shaping indusiry standards, legislation.

| More work on transparent design.

| Investigate symbolic and sub-symbolic reasoning.

| Evaluation:
» We need benchmark - Shall we start a task force?
» We need an XAl challenge - Anyone interestede
2 Rigorous, agreed upon, human-based evaluation protocols

This document may not be reproduced, modified, adapted, published, tfranslated, in any way, in whole orin
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved
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h and Technology Applied Al (Artificial Intelligence) Scientist

Wherever sofety and Security are Critical, Thales ¢

build smarter solutions. Everywhere.

L]
J O b O e n I n S hnology leader for the Defen:
’gy, the combined expertise ¢ PyTorch, Theano

aies a key player in keeping the pub
protecting the national security interests of count

nave maae

Established in 1972, Thales Canada has over 1,80c  ®  Strong Python programming skills
Toronto and Vancouver working in Defence, Avior

This is a unique opportunity to play a key role on t y " .

Technology (TRT) in Canada (Quebec and Montre: e Eagerness to contribute in a team-oriented environment
applied R&T experts at five locations worldwide. 1
intelligence technologies. Our passion is imagining
cutting edge Al technologies. Not only will you joil
network, but this TRT is also co-located within Cor
Intelligence eXpertise) i.e., the new flagship progr

to work,

Job Description

An Al (Artificial Intelligence) Research and Techno
developing innovative prototypes to demonstrate
intelligence. To be successful in this role, one mos
what's new, and a strong ability to learn new tech
hand-on technical skills and be familiar with latest
will contribute as technical subject matter experts

* Strong knowledge of Machine Learning foundations

* Strong development skills with Machine Learning frameworks e.g., Scikit-learn, Tensoflow,

* Knowledge of mainstream Deep Learning architectures (MLP, CNN, RNN, etc).

*  Working knowledge of Linux OS

* Demonstrated leadership abilities in school, civil or business organisations
* Ability to work creatively and analytically in a problem-solving environment

* Proven verbal and written communication skills in English (talks, presentations, publications,
etc.)

Basic Qualifications
* Master’s degree in computer science, engineering or mathematics fields

* Prior experience in artificial intelligence, machine learning, natural language processing, or
advanced analytics

and its busi units. In addition to the i

individual will also be involved in the initial projec
thinking, and team work is also critical for this rol¢

M AY 2 N D 20 ‘I 9 As a Research and Technology Applied Al Scientist working structured and unstructured data (SQL, Cassandra, MongoDB, Hive, etc.)
’

paced projects.

Profi skill

Fre d d y Le C U e * Good foundation in mathematics, statistic

Chief Al Scientist, CortAlx, Thales, Montreal - Canada

@freddylecue
https://tinyurl.com/freddylecue
Freddy.lecue.e@thalesdigital.io

Preferred Qualifications

Minimum 3 years of analytic experience Python with interest in artificial intelligence with

* Atrack record of outstanding Al software development with Github (or similar) evidence
Demonstrated abilities in designing large scale Al systems

.
* Demonstrated intere! Explainable Al ang@or relational learning

*  Work experience with programming languages such as C, C++, Java, scripting languages
(Perl/Python/Ruby) or similar

Hands-on experience with data visualization, analytics tools/languages

1ah

e D rated rk and ¢ ation in professional settings

Ability to establish credibility with clients and other team members


https://tinyurl.com/freddylecue

